

PRBEM Standard Data Analysis Procedure

Antoine Brunet
ONERA/DPHY, Université de Toulouse, France
Vice-chair of the COSPAR PRBEM

GSICS Annual Meeting, 12 March 2024 EUMETSAT HQ, Darmstadt, Germany

PRBEM Presentation

- PRBEM is the COSPAR Panel for Radiation Belt Environment Modeling
- Established to develop a standard model of the Earth's trapped radiation belts using theory and data:
 - Provide guidelines for development and data analysis of radiation monitor
 - Promote critical discussion to establish the quality of datasets

What's on the PRBEM Github (what could be)

- https://github.com/PRBEM contains the following, community maintained projects:
 - The PRBEM website https://prbem.github.io with standard documents:
 - Data analysis procedure
 - Standard file format guidelines for particle fluxes
 - Standard file format guidelines for particle count rates
 - Response file format and organization guidelines
 - The IRBEM library (magnetic field models and magnetic coordinates computation)
- The PRBEM Github could host the discussions for new PRBEM standards and guidelines:
 - Public, traceable discussions plateforme
 - Collaborative writing of the standard (e.g. using Markdown)
- Other collaborative, open-source libraries could be hosted here too

PRBEM Data Analysis Procedure (DAP)

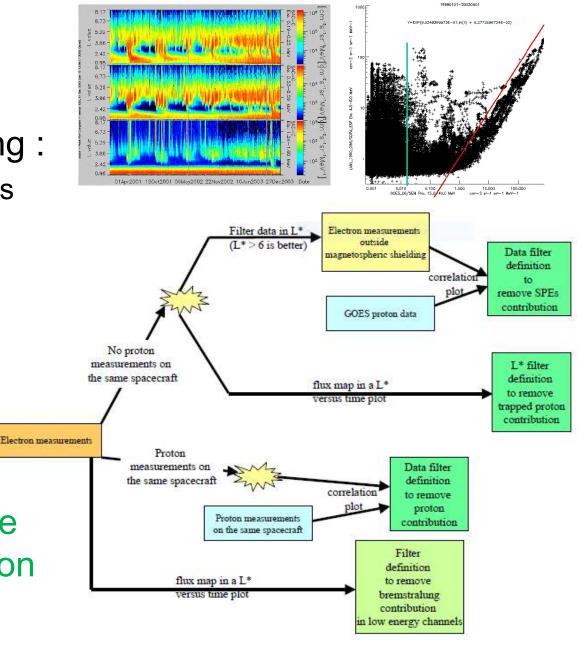
Available on the PRBEM website :

https://prbem.github.io/docs/

- Goal of the document: propose baseline and safe data analysis methodologies for space radiation measurements to improve space radiation models
- Defines:
 - Coordinates computation
 - Cross-contamination detection and removal
 - Background levels identification
 - Inter-calibration
- The DAP could benefit from an update, proposed axes of amelioration are written in green

Coordinates definition and computation

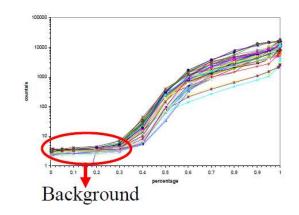
- We should compare different instruments observation at the same locations. If the instruments are not on the same satellite, we need to know their position using appropriate coordinates systems: magnetic coordinates (L*, equatorial pitch angle, MLT)
- The PRBEM DAP specify the magnetic field model for the coordinates computation:
 - IGRF + Oltson-Pfitzer Quiet-Time 1977(OPQuiet)
- This model is fast to compute and can be computed without external data (so for all missions), but only applies to quiet times...
- What about populations only observed during disturbed times?
- How to properly account for magnetic field uncertainties?

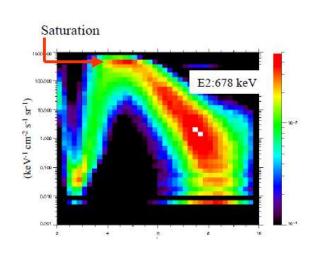


Data contamination

- Guidelines for data filtering :
 - of SEP and trapped protons contamination in electron channels
 - of relatistic electrons contamination in proton channels

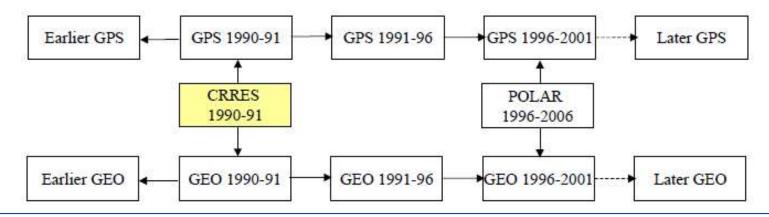
 Possibility to automate the fitting process in correlation plots?





Background and saturation

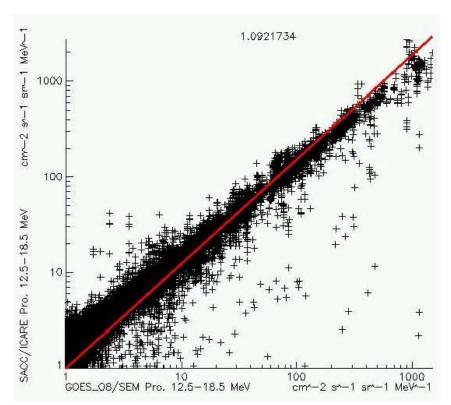
- Guidelines for detection and filtering of background noise, particularly GCR induced background (with solar-cycle dependency)
- Detection of Poisson uncertainties/discretisation errors
- The DAP mentions background correction (substracting GCR from fluxes) and data removal (instead of flagging)
- Saturation: No mention of dead time correction in the DAP

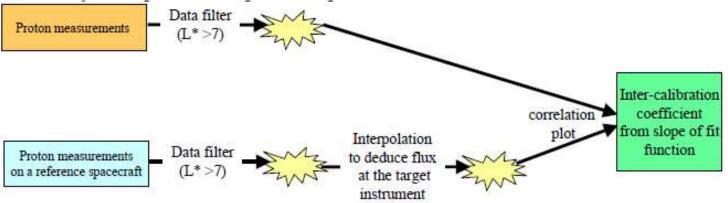


Inter-calibration on trapped particle dynamics

- Guidelines for on-orbit calibration scaling the spectra to a « gold standard »:
 - CRRES/MEA for electrons 300keV-1.6MeV
 - GOES8/SEM for protons 10-100MeV
 - Newer missions should probably be considered here
- Find calibration factors for a set of conjunctions, take the average excluding outliers

Conjunctions


- Conjunctions definition:
 - 1. $L^* < 6$. and $\Delta L^* < 0.1$
 - 2. $\Delta(B/B_{eq}) < 0.1$ and B/B_{eq} as close as possible to one
 - 3. Magnetic Local Time (MLT) within 2 hours of 06:00 and 18:00
 - Magnetospheric activity quiet (Kp < 2) for two days before conjunction
 - 5. $\Delta t < 3$ hours
 - 6. Particle energy > 100 keV (particle must be trapped)
- These conditions are sometimes too strict (esp. in GEO) to provide a reasonable number of conjunctions, but reduce the impact of magnetic field uncertainties



Inter-calibration on SEP

- Calibration of high energy proton (>5MeV) observation outside of the geomagnetic shielding:
 - L*>7, or
 - L*>5.5 and Ec>10MeV for GEO
- Proton fluxes should be very well correlated during SEP events
- What about anisotropy during SEP onset?

Conclusion

- The PRBEM Data Analysis Procedure gives general guidelines for the processing of trapped particles observation
- The document hasn't been updated for a while, and a new version could be written:
 - Standard magnetic field model to use
 - Updated definitions for the « gold standard »
 - Standardization/guidelines for inversion
 - How to manage non-omnidirectional fluxes?
 - etc.
- The PRBEM would be a fitting frame for this discussion and the writting of these updated guidelines

