

On-orbit characteristics monitoring and analysis of Fengyun-4 AGRI infrared channels

Xingwei He, Chengli Qi, Zhiwei Wang, Wenqiang Lu

National Satellite Meteorological Center(NSMC), CMA

Brief introduction of FY-4 AGRI AGRI On-board performance status Calibration accuracy assessment result Summary

Brief introduction of FY-4

Fengyun-4 is the second generation of geostationary orbit meteorological satellite in China. The scientific Research and test satellite (FY-4A) was successfully launched on December 11, 2016, and has realized the upgrading of the technical system. FY-4B is an operational satellite and it was launched successfully on June 3, 2021. It was designed to be the first operational satellite of the FY-4 series, and was successfully located at 123.5°E on June 10, 2021, and relocated to 133°E on April 11, 2022, for operational service.

In order to improve the application benefits of satellites, FY-4B is based on scientific research and test satellites, and has been adjusted mainly in terms of payload deployment and performance improvement

The primary payloads onboard FY-4B are Advanced Geostationary Radiation Imager (AGRI), Geostationary Interferometric Infrared Sounder (GIIRS), and Geosynchronous High-speed Imager (GHI) and Space Environment Monitoring Instrument Package (SEP). The main observation capabilities are similar to those of FY-4A, with some significant performance improvements.

AGRI On-board Performance Status

Comparison between FY-4A/AGRI and FY-4B/AGRI

Characteristics of FY4A/AGRI

Characteristics of FY4B/AGRI

Туре	Channel /Band	Range(µm)	Spatial resolution(km))	Sensitiv	ity/SNR	Primary purpose	Channel/ Band	Center wave length (µm)	Range(µm)	Spatial resolution(km)	Sensitivity/SNR		Primary purpose
Visible	1	0.45 ~ 0.49	1	S/N≥90 (ρ=100%)		Aerosol	1	0.47	0.45~0.49	1	S/N≥90(p=100%)		Aerosol
Near- Infrare d	2	0.55 ~ 0.75	0.5 ~ 1	S/N≥150 (ρ=100%) @0.5Km	S/N≥3 (ρ=1%) @1Km	Fog, cloud	2	0.65	0.55~0.75	0.5	S/N≥150(ρ=100%)@0.5km	S/N≥3(ρ=1%) @1km	Fog, cloud
	3	0.75 ~ 0.90	1	S/N≥200 (ρ=100%)	S/N≥3 (ρ=1%)	Vegetation	3	0.825	0.75~0.90	1	S/N≥200(ρ=100%)	S/N≥3(ρ=1%)	Vegetation
Short- wave Infrare d	4	1.36 ~ 1.39	2	S/N≥150 (ρ=100%)	S/N≥3 (ρ=1%)	Cirrus	4	1.379	1.371~1.386	2	S/N≥120(ρ=100%)	S/N≥2(ρ=1%)	Cirrus
	5	1.58 ~ 1.64	2	S/N≥200 (ρ=100%)	S/N≥3 (ρ=1%)	Cloud, snow	5	1.61	1.58~1.64	2	S/N≥200(ρ=100%)	S/N≥3(ρ=1%)	Cloud, snow
	6	2.1 ~ 2.35	2~4	S/N≥200 (ρ=100%)	S/N≥3 (ρ=1%)	Cirrus, aerosol	6	2.225	2.10~2.35	2	S/N≥200(ρ=100%)	S/N≥2(ρ=1%)	Cirrus, aerosol
Mid- wave	7	3.5 ~ 4.0(high)	2	NE∆T≤0.7K (300K)		Fire	7	3.75	3.50~4.00(high)	2	≤0.7K(315K)		Fire
Infrare d	8	3.5 ~ 4.0(low)	4	NE∆T≤0.2K (300K)	NE∆T≤2K (240K)	Land surface	8	3.75	3.50~4.00(low)	4	0.2K(300K)	2K(240K)	Land surface
Water vapor	9	5.8 ~ 6.7	4	NE∆T≤0.2K (300K)	NE∆T≤0.9К (240К)	High level water vapor	9	6.25	5.80~6.70	4	0.2K(300K)	0.9K(240K)	High level water vapor
		6.9 ~ 7.3	4	NEAT≤0.25K (300K)	NE∆T≤0.9К (240К)	Middle level water vapor	10	6.95	6.75~7.15	4	0.25K(300K)	0.9K(240K)	Mid level water vapo
	10						11	7.42	7.24~7.60	4	0.25K(300K)	0.9K(240K)	Low level water vapor
Long- wave Infrare d	11	8.0 ~ 9.0	4	NE∆T≤0.2K (300K)	NE∆T≤0.4K (240K)	Water vapor, cloud	12	8.55	8.3~8.8	4	0.2K(300K)	0.4K(240K)	Cloud
	12	10.3 ~ 11.3	4	NE∆T≤0.2K (300K)	NE∆T≤0.4K (240K)	Surface temperature	13	10.80	10.30~11.30	4	0.2K(300K)	0.4K(240K)	Surface temperature
	13	11.5 ~ 12.5	4	NE∆T≤0.2K (300K)	NE∆T≤0.4K (240K)	Surface temperature	14	12.00	11.50~12.50	4	0.2K(300K)	0.4K(240K)	Surface temperature
	14	13.2 ~ 13.8	4	NE∆T≤0.5K (300K)	NEΔT≤0.9K (240K)	Cloud thickness	15	13.3	13.00~13.60	4	0.5K(300K)	0.9K(240K)	Cloud thickness

AGRI On-board Performance Status

Calibration accuracy_TB bias

FY-4A

6.25µm

CH_09

3

CH_10

CH_12

4

2 3 6.95µm

Calibration accuracy_TB bias

FY-4A

FY-4B

Calibration accuracy_TB bias

- For 09\10, TB bias depends on the target temperature; it is smaller and more stable for higher Tb and increased for lower Tb. Othe Channels, the variation of bias with TB is not obvious.
- > The Tb of AGRI is lower than that of IASI in most channels, and the Tb bias is negative.
- > The band dynamic range of FY-4B is larger, and the number of samples is more than 4A

Long-term time series of bias

2024

2024

2024

4A:2023.01.01-2024.02.20

4B:2023.01.01-2024.01.22

IASI data was not obtained in July and August, so there is no result.

Long-term time series of bias

satellite	Channel 4B	CH_09 (6.25µm)	CH_10 (6.95µm)	CH_11 (7.42µm)	CH_12(8. 55µm)	CH_13 (10.8µm)	CH_14 (12µm)	CH_15 (13.3µm)
4B	Bias/K	0.17	-0.06	-0.34	-0.26	-0.23	-0.13	-0.32
	Std/K	0.18	0.08	0.31	0.31	0.32	0.26	0.34
	Channel 4A	CH_09 (6.25µm)		CH_10 (7.1µm)	CH_11 (8.5µm)	CH_12 (10.7µm)	CH_13 (12.0µm)	CH_14 (13.5µm)
4A	Bias/K	-0.18		0.27	0.1	-0.17	-0.04	-0.3
	01.1/1/	0.40		0.07	0.00	0.0	0.04	0 1 5

4A:

Tb bias are less than 0.3K for all chanels.

The time sequence of TB bias of CH_{11} are not stable.

4B:

Tb bias are less than 0.3K for CH_09-1012-14 and about 0.4K for CH_11 and CH_15. The time sequence of TB bias is stable.

Spatial distribution of bias

Spatial distribution of bias

4A CH_11(8.55µm)

4B CH_12(8.55µm)

The spatial distribution clearly varies with month

Bias analysis of hot land

Asymmetric time differences

Ref:Tim Hewison et.al, "GEO-LEO & LEO-LEO IR Hot land Analysis Importance of Collocations' Symmetric Time Difference",GSICS Web meeting 2023-07-06

Bias analysis of hot land

Collocations' time difference are not symmetrically distributed over hot land for channels of 8.55,10.8 and $12\mu m$

- AGRI and IASI inter-comparison
- ➤ For FY-4A, Bias are less than 0.3K for all channels.
- \blacktriangleright For FY-4B, Bias are less than 0.3K except for 0.4K of 10.8µm and 13.3µm.
- > The time sequence of TB bias is stable.No significant degradation occurred for all Channel.
- Abnormal spatial distribution of bias for 8.55µm.
- ➢ For FY-4A, anomaly spatial distribution with seasons.
- ➢ For FY-4B, anomaly spatial distribution in Australia with seasons.
- Bias analysis of hot land
- Collocations' time difference are not symmetrically distributed over hot land for channels of 8.55,10.8 and 12μm.

Thank you

Email:hexingwei@cma.gov.cn

GSICS Agency Report

27 Feb – 3 March 2023, GSICS Annual Meeting (Hybrid), College Park, MD, USA