

JAXA Agency Report 2022

Misako KACHI, Hiroshi MURAKAMI, Kosuke YAMAMOTO, Takuji KUBOTA, Kei SHIOMI, and Takeo TADONO

JAXA

Agency's GSICS Activities, Action & Achievements Summary

- Current GSICS Activities
 - GCOM-C/SGLI lunar calibration by GIRO is updated (58 times in 2018-2021) and the Lunar data (GLOD) have been provided to the GIRO community
 - The new CEOS recommended spectral solar irradiance (TSIS) is tested in the SGLI vicarious calibration
 - GOSAT-2/CAI-2 lunar calibration by GIRO is updated and the response degradation is estimated
 - GOSAT/FTS and GOSAT-2/FTS-2 TIR bands are compared with AIRS and IASI at nadir and off-nadir simultaneous observations
 - Development of HW & L1 algorithm for GOSAT-GW/AMSR3 is underway, including examination of RFI mitigation, evaluation performance of new G-band channels
 - Other calibration activities of each instrument
 - Contribution to subgroup meetings
- Status of Agency's GSICS Actions
 - No GSICS Actions

SGLI Lunar CAL by GIRO

- ✓ GCOM-C SGLI lunar calibration is regularly updated by the monthly lunar observations (by the pitch maneuver; 58 times in 2018-2021) with GIRO
- The SGLI/GIRO trends are consistent with ones from the other onboard and vicarious calibrations
- ✓ Phase angle (+5~+10 degree) dependency is evaluated by AHI lunar observations at various phase angles
- ✓ The gain degradation has been considered in ver.2 SGLI Level-1B product

Time series of SGLI/GIRO trend (Normalized by 2018/2/1)

GSICS Agency Report

• Urabe et al. (2020). DOI: <u>10.3390/rs12010069</u>; Urabe et al. (2019) DOI: <u>10.1109/IGARSS.2019.8897892</u> ³

Vicarious calibration by the new CEOS recommended Solar Spectral Irradiance Spectrum (TSIS)

✓ No influence on the Lunar cal. because we use for relative temporal change

✓ L1B reflectance and vicarious calibration is influenced by the Solar Spectral Irradiance

GOSAT-2 Lunar CAL by GIRO

- CAI-2 has been operated the lunar calibration for radiometric calibration by along-track (AT) scans (satellite pitch rotations) once a month since December 2018. The lunar phase angle is targeted around 7 deg.
- ✓ CAI-2 observes at 340, 380, 440, 550, 670, 870, and 1630 nm and compered with GIRO. 340nm is compared with the extrapolated model.
- ✓ CAI-2 B1 340 nm band degraded around 12 %, B6 380 nm band around 4 % in the first 3 years.

4sweep average : Relative response trend

CAI-2 first lunar calibration by AT scan on December 23, 2018

(Normalized 2018/12/23) 1.02 --OBS/GIRO_B01 1.00 -OBS/GIRO B02 0.98 **DBS/GIRO** 0.96 0.94 -OBS/GIRO BO6 0.92 -OBS/GIRO B07 0.90 -OBS/GIRO B08 0.88 -OBS/GIRO B09 2020/04 app 2020/06 2020/08 2020/10 2021/04 2021/06 2021/08 2021/10 2019/02 2019/04 2019/06 2019/08 2019/10 2019/12 2020/02 2020/12 2021/02 2021/12 2018/12 ----OBS/GIRO B10

CAI-2 radiance compared with GIRO

Agency's Instruments Updates & Planned launches

- Summary of current and future instruments
 - GOSAT, GCOM-W, GPMCore/DPR, ALOS-2, GCOM-C, GOSAT-2: Operating
 - ALOS-3 (advanced Optical) & ALOS-4 (advanced SAR, successor of ALOS-2): Planned to be launched in TBD (hopefully JFY2022)
 - EarthCARE/CPR (joint mission with ESA): Planned to be launched in JFY2023
 - GOSAT-GW (successor of GOSAT-2 & GCOM-W): Planned to be launched in JFY2023
- Status of Level 1 reprocessing
 - GOSAT/TANSO-FTS Level 1 (Ver.230.231) was released in June 2021
 - GOSAT-2/TANSO-CAI-2 Level 1 (Ver.103.103) was released in January 2022
 - GOSAT-2/TANSO-FTS-2 Level 1 (Ver.210.210) was released in January 2022
 - GCOM-C/SGLI Level 1 (Ver.2) was released in June 2020 and the reprocessing is completed

AMSR3 on GOSAT-GW: Global Observation SATellite for Greenhouse gases and Water cycle

GOSAT-GW will carry two instruments, AMSR3 & TANSO-3.

- AMSR3, led by JAXA, will succeed AMSR series observations adding new high-frequency channels for solid precipitation retrievals and water vapor analysis in NWP.
- TANSO-3, led by Japanese Ministry of the Environment (MOE) and National Institute of Environment Studies (NIES), will improve observation capability of greenhouse gases from GOSAT-2/TANSO-2.
- Target launch is JFY2023 (Apr. 2023 Mar. 2024)

GOSAT-GW Satellite Specifications			Center frequency	Polariz ation	Band width Гмн , 1	NEDT (1σ)	Beam width (spatial resolution)
Orbit	Туре	Sun-synchronous, Sub-recurrent orbit	6.925		25.0	10.241/	1.8°
	Altitude	666km, recurrent cycle 3days (same as GOSAT)	7.3	H/V	350	< 0.34 K	(34km x 58km)
			10.25	H/V	500	< 0.34 K	1.2° (22km x 39km)
	MLTAN	13:30±15min (same as GCOM-W)	10.65		100	< 0.70 K	1.2°
Mass		2.6 ton (Including propellant)	10.05	Π/ V	100	< 0.70 K	(22km x 39km)
Power		> 5.3 kW	18.7	H/V	200	< 0.70 K	0.65° (12km x 21km)
Design life		> 7 years	23.8	H/V	400	< 0.60 K	0.75 [°] (14km x 24km)
Launch vehicle		H-IIA rocket	36.42	H/V	840*	< 0.70 K	0.35 [°] (7km x 11km)
Mission data downlink rate		Direct transmission with X-band: 400 Mbps Direct transmission with S-band: 1 Mbps (Only for AMSR3)	89.0 A/B	H/V	3000	< 1.20 K	0.15 [°] (3km x 5km)
			165.5	v	4000	< 1.50 K	AZ=0.23°/EL=0.30° (4km x 9km)
			183.31±7	v	2000 × 2	< 1.50 K	AZ=0.23° / EL=0.27°
Instrument		TANSO-3 (for GHG) AMSR3 (for Water Cycle)	183.31±3	v	2000 × 2	< 1.50 K	AZ=0.23° / EL=0.27° (4km x 8km)

AMSR3 Channel Sets

Red: Changes from AMSR2 including additional CHs

* Changed the specification of Ka-band passband to reduce the future risk of RF interference from 5-G mobile communication system

Toward RFI mitigation in GOSAT-GW/AMSR3

AMSR3 and 5G allocated frequencies (22GHz ~ 30GHz) System \ Freq 23GHz 24GHz 26GHz 27GHz 28GHz 29GHz AMSR3 and 5G frequencies have a buffer band of 250 Japan 27.5-29.5 MHz (24.0 to 24.25 GHz) USA 24.75-25.25 24.75-28.35 5G Europe :AMSR 24.25-27.5 : Assigned China 24.75-27.5 AMSR3 and 5G frequencies actively considered for use Feasibilty study Korea 26.5-29.5 are adjacent to each other AMSR3 and 5G allocated frequencies (33GHz ~ 41GHz) with no buffer band. System \ Fre 39GHz 40GHz AMSR Its impact cannot be avoided 36-37 Japan by improving the out-of-band USA 5G frequency characteristics Europe AMSR while maintain the bandwidth. Assigned China 37-42.5 actively considered for use :Feasibilty study Korea AMSR3 Receiver filter characteristics As a result of the study to minimize the 5G reduced bandwidth, the bandwidth of 36 GHz was changed from 1000MHz to 840 MHz 37GHz 36GHz 🔻 Freq. while NEDT specification unchanges. EESS (passive) allocated bandwidth

Additional Slides not Presented

SGLI thermal infrared (TIR) cross calibration by satellite sounders

match-up locations of IASI-A

- ✓ SGLI/AIRS and SGLI/CrIS indicate that SGLI TIR is stable
- ✓ SGLI/IASI shows some fluctuation but that seems due to the inconsistency of the samples

Current status of GPM/DPR calibration

- JAXA usually conducts 10 times external calibrations in a year at Tsukuba Space Center in Japan.
- Current calibration activities show the GPM/KuPR and GPM/KaPR are working well.

Continuity of the GPM/DPR and the TRMM/PR

Over-ocean surface precipitation

rates averaged in 35S-35N.

- Both GPM/DPR's calibration factors and TRMM/PR's calibration factors were changed in 2017.
- After the algorithm update in Dec. 2021, the GPM/KuPR V07 and the TRMM/PR V9(GPM TRMM V07) show good continuity on surface precipitation rate.
- These dataset was used long-term precipitation analyses, such as heavy rainfall over East Asia (Takahashi and Fujinami 2021, <u>https://doi.org/10.1038/s41598-021-93006-0</u>)

Over-land surface precipitation rates averaged in 35S-35N.

ALOS-2/PALSAR-2 Calibration Summary Updates

- ✓ ALOS-2 was launched in 2014, successfully passed 7 yrs. of the post operation in May 2021. It is now operating well in the post operation phase 2.
- ✓ On-board internal calibration is performed every 3 months.
- Product quality of major observation modes is evaluating regularly using SAR data over calibration sites.
- ✓ The standard product processing software was updated in June 2018 (radiometric calibration), Nov. 2018 (correction of range offset), and May 2021 (updates the software for Spotlight and ScanSAR).
 - > PALSAR-2 keeps in good conditions and performances.

Summary of evaluation results of ALOS-2 PALSAR-2 Standard products as of Sep. 2021.

Items	Results			
Geometry (RMSE)	[Stripmap and Spotlight] 5.53 m (L1.1) / 6.73 m (L2.1) [ScanSAR] 60.77 m (L1.1) / 29.33 m (L2.1)			
Radiometry	RCS accuracy (1σ)	0.529 dB (Corner Reflectors) 0.41 dB (Amazonian forests)		
	VV-HH amplitude ratio	1.003 (σ=0.012)		
Polarimetry	VV-HH phase difference	-0.323 deg (σ=1.436)		
[SM 6m]	Cross talk	[HV/HH] -42.858 dB (σ=6.638) [VH/VV] -42.667 dB (σ=5.518)		

* https://www.eorc.jaxa.jp/ALOS/en/alos-2/a2_calval_e.htm

Introduce/Confirm the Agency's Personnel supporting GSICS

- ✤ GRWG:
 - Hiroshi Murakami (optical & IR imager) (murakami.hiroshi.eo@jaxa.jp)
 - Misako Kachi (MW) (kachi.misako@jaxa.jp)
- GDWG:
 - None
- Other key agency personnel supporting GSICS activities:
 - Yukio Kurihara (optical & IR imager, MW)
 - Kosuke Yamamoto & Takuji Kubota (precipitation radar),
 - Kei Shiomi (GOSAT, GOSAT-2)
 - Takeo Tadono (high resolution optical imager & SAR)

Thank you for your attention

WMO GSICS Portal http://gsics.wmo.int

GSICS Coordination Centre http://www.star.nesdis.noaa.gov/smcd/GCC/index.php

GSICS Product Catalog

https://www.star.nesdis.noaa.gov/smcd/GCC/ProductCatalog.php

GSICS Wiki

http://gsics.atmos.umd.edu/wiki/Home