

Radiometric Calibration of SkySats using Near-Simultaneous Crossovers with Sentinel-2

+ GSICS mini conference 2022

Hannah Bourne, Alan Collison and Arin Jumpasut

Uluru, Australia – December 2, 2015

+ Agenda

- 1. Introduction to Planet Payloads
- 2. Interoperability Challenges
- 3. Calibration Methodology
- 4. Calibration Validation
- 5. Summary

+ Updates

- 44 additional SuperDoves
- 8 band PSScene product launched
- White paper on the calibration
 methodology publicly available:
 https://assets.planet.com/docs/radiometric_c
 alibration_white_paper.pdf
- Currently rolling out SkySat calibration updates to production

+ Our Speakers

Hannah Bourne
Scientific Geospatial Software
Engineer, Planet

hannah.bourne@planet.com

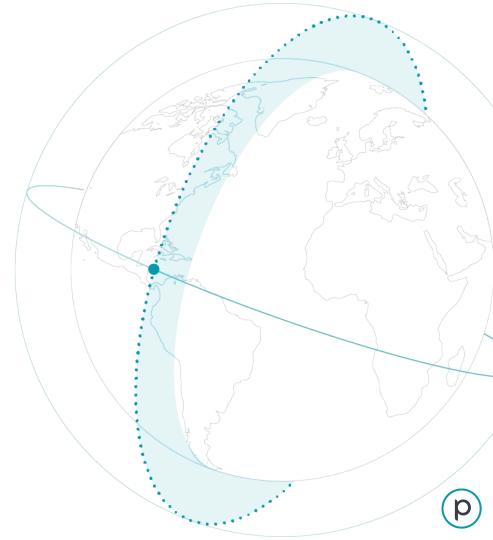
Alan Collison
Staff Software Engineer,
Planet

alan.collison@planet.com

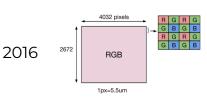
Arin JumpasutSenior Engineering Manager,
Planet

arin.jumpasut@planet.com

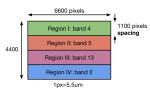
Planet Satellites

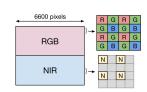

Doves (PlanetScope)

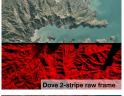
SkySat


0 3	
GSD	CAPACITY
0.65 m	600 K km² /day
	GSD 0.65 m

Planet Payloads


Over the Years

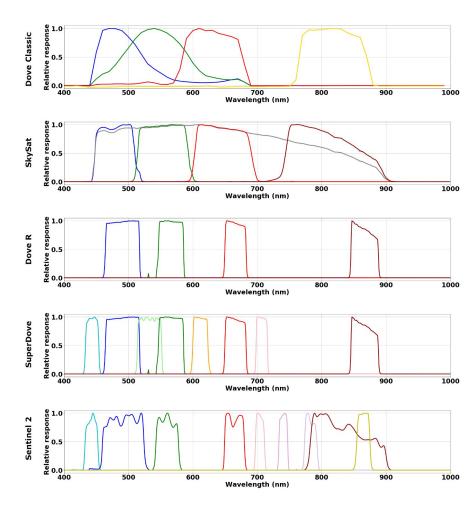




2560 px

2017

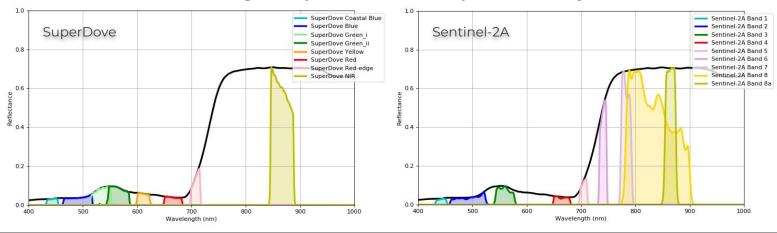
perDove (~120 sate


2019 2020 2021 2022

Region It band 2
Region It band 3
Region It band 3
Region IV band 4
Region IV band 6 (Vellow)
Region V: band 6 (Vellow)
Region V: band 6 (Vellow)
Region VII: band 13
Region VIII: band 13

SkySats (21 satellites)

Planet Payloads Over the Years

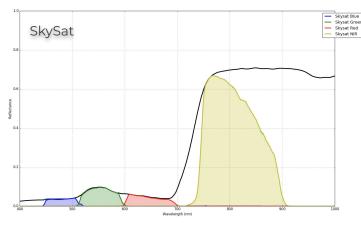


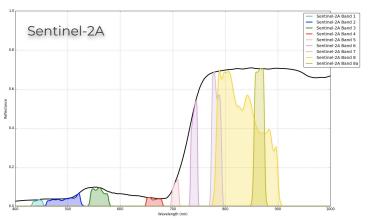
Effects of Differing Responses

SuperDove

A lawn grass spectrum from a spectral library

SBAF Corrections SuperDove → Sentinel-2	Coastal Blue to Band 1	Blue to Band 2	Green_ii to Band 3	Red to Band 4	Red-edge to Band 5	NIR to Band 8a
	0.992	1.019	1.053	0.9524	0.846	1.000





Effects of Differing Responses

SkySat

A lawn grass spectrum from a spectral library

SBAF Corrections SkySat + Sentinel-2	Blue to Band 2	Green to Band 3	Red to Band 4	NIR to Band 8
	1.12	1.11	0.84	1.03

Overview

Original SkySat Calibration Methodology

Calibrations based on gathering a dataset of **RadCalNet** site crossovers.

$$Rad = \frac{DN}{IntTime} \cdot gain + offset$$

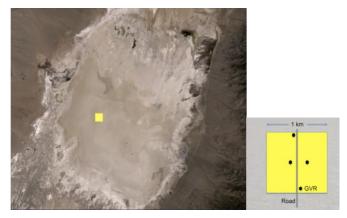
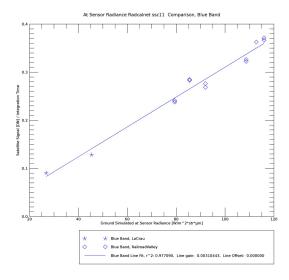



Figure from radcalnet.org

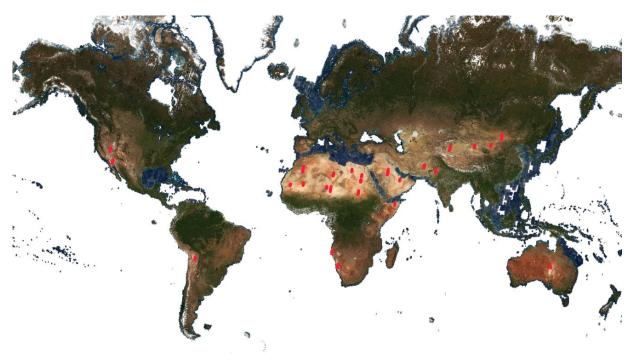
S111 September 2020 Calibration Blue Band

Overview

Current Methodology

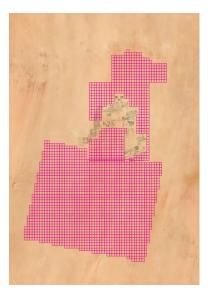
- Calibrations are based on gathering a dataset of near simultaneous crossovers with a reference satellite
 - A simultaneous crossover is when there is less than two hours difference (three hours for SkySats) between a reference image and a Planet image for the same point
 - Same reference satellite for all: Sentinel-2

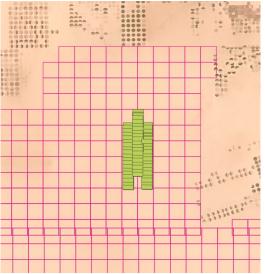
Dove Classic/SkySat


- Standard set of calibration sites, "homogeneous" sample regions
- **Hyperion spectra** for characterizing the surface reflectance to calculate SBAFs
- SuperDove/Dove-R
 - Global simultaneous crossovers with Sentinel-2
- Lunar collects used for:
 - o per-satellite trending of calibration gains to check satellite health
 - Intra-flock consistency adjustments
- 6-month update interval chosen
 - Long enough to allow sufficient crossovers
 - Short enough to allow needed updates

Calibration Sites

Locations of Pseudo-Invariant Calibration (PIC) sites and RapidEye Calibration sites

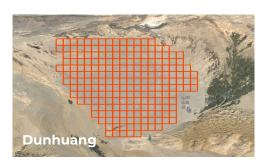




+

Tasking Calibration Sites

Tasking Pseudo-Invariant Calibration (PIC) sites and RapidEye Calibration sites



+

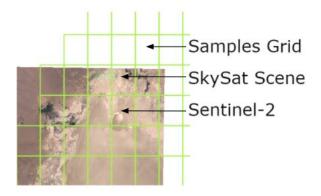
Sample Areas / Details

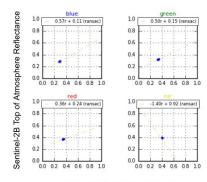
Dove Classic & SkySat

- Sample size is 1000 x 1000 Pixels (~3.5 km resolution)
- Sampling in spectrally homogenous locations within calibration site
- Spectra is characterized using Hyperion Imagery

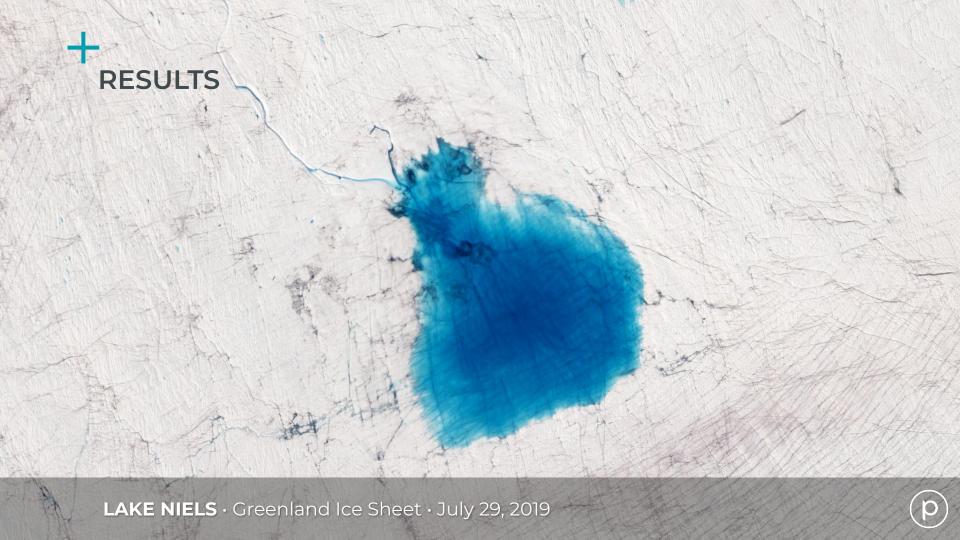
$$SBAF_{B\to A} = \frac{\bar{\rho}_{\lambda(A)}}{\bar{\rho}_{\lambda(B)}} = \frac{\left(\frac{\int \rho_{\lambda}RSR_{\lambda(A)}d\lambda}{\int RSR_{\lambda(A)}d\lambda}\right)}{\left(\frac{\int \rho_{\lambda}RSR_{\lambda(B)}d\lambda}{\int RSR_{\lambda(B)}d\lambda}\right)}$$

Namibia I

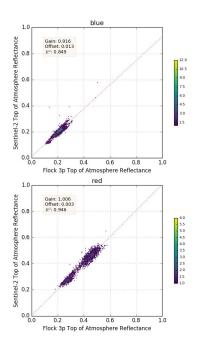

Example
Calibration Site
sample grids

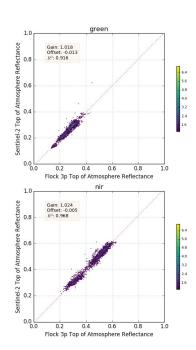


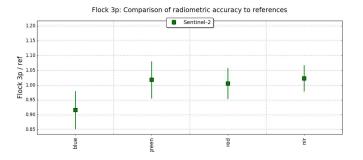
Crossover Analysis / Details SkySat

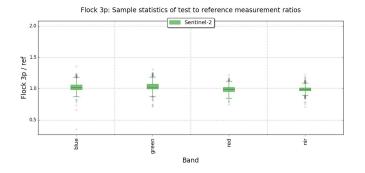

 Statistics are gathered and recorded for each crossover, in particular the median of the sample reflectance for both the SkySat and Sentinel collects.

S1 Top of Atmosphere Reflectance

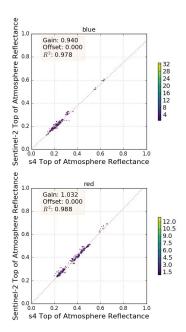


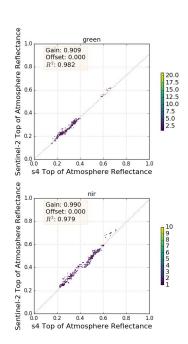


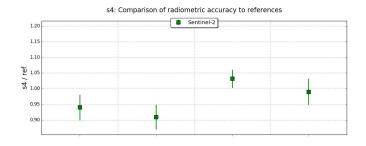

+

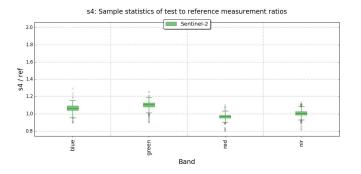

Dove Classic

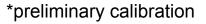
FLOCK 3P

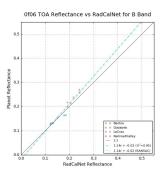












RadCalNet Verification

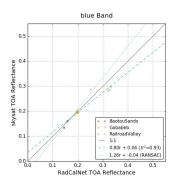
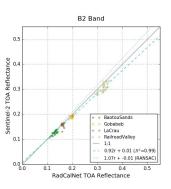


Image of Railroad Valley Site From radcalnet.org


Dove Classic

SkySat s4

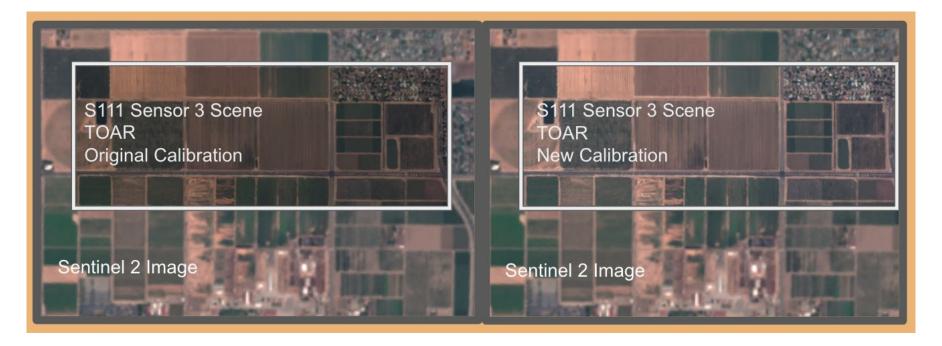
Sentinel-2

CONCLUSIONS RAPID REVISIT · 11:43 a.m. · Vancouver, Canada · July 18, 2021

+

-Calibration Process

Process	Dove Classic	Dove-R	SuperDove	SkySat*
Simultaneous crossovers for on orbit calibration	With Sentinel-2 over calibration sites	With Sentinel-2 globally	With Sentinel-2 globally	With Sentinel-2 over calibration sites
Lunar Monitoring	Since late 2016	Since late 2018	Since late 2019	None
Reported Validation**	Comparison with RadCalNet data	Comparison with RadCalNet data	Comparison with RadCalNet data	Comparison with RadCalNet data


^{*} Updated radiometric calibration in progress

^{**} For L1 Image Quality reports from Q3 2021 onwards

Sentinel-2 as Reference

Original and post Sentinel-2

- Update methodology throughout Planet's fleet to use Sentinel-2 as our calibration reference
- New SkySat calibrations in release process
- Calibration verification uses RadCalNet sites
- White paper publicly available: <u>https://assets.planet.com/docs/radiometric_calibration_white_paper.pdf</u>

Thank You

We're here to Help!

Get answers to technical questions about Planet products.

support.planet.com

Contact Us

Learn how Planet can help you turn data to actionable insights.

go.planet.com/getintouch

Learn More

www.planet.com

