Global Space-based Inter-Calibration System (GSICS) Data & Research Working Groups Annual Meeting 28th February 2023

ESA Assets and Intercalibration Capability

Piers Jiggens, Juha-Pekka Luntama, Hugh Evans, Melanie Heil, Petteri Nieminen, Alexi Glover

ESA UNCLASSIFIED – Releasable to the Public

Overview

- ESA and its contractors are provisioning various historical, current and near real-time data sets
- We have been contributing to CGMS (Coordination Group for Meteorological Satellites) SWCG Inter-Calibration Task Group which aimed to conduct comparisons of data to verify their performance for use in space weather monitoring and modelling
 - Our tools, data and expertise could contribute to the implementation of a Global Space-based Inter-Calibration System (GSICS)
 - This presentation focusses on particle radiation monitor data and covers:
 - An overview of elements of ESA which contribute in some way
 - ESA assets which can potentially be included in such a system
 - An introduction to methods for accessing the data
 - Thoughts on how the GSICS framework may look

Overview of Contributing Directorates within ESA

- As we can benefit from multi-point in-situ measurements of space weather phenomena there is an effort to host monitors on a variety of platforms in different orbits coming from a range of Science and Exploration and Application directorates.
- These data should be gathered and processed to higher-level data and then provisioned to end users nominally through the Directorate of Operations' Space Safety Programme (S2P)
- Contributing directorates within ESA include:
- OPS ESA Space Weather Office part of the Space Safety Programme (S2P)
- TEC Space Environment and Effects and various In-Orbit Demo missions (PROBA, RadCube)
- SCI Hosting Monitors on Various Science Missions (Integral, Rosetta, Planck, Hershel, BepiColombo, JUICE)
- EOP Hosting Monitors on Sentinel-6, MetOp 2nd Generation and Meteosat 3rd Generation

Contribution from SMOS and SWARM Earth Explorer missions (illustrated in separate presentation)

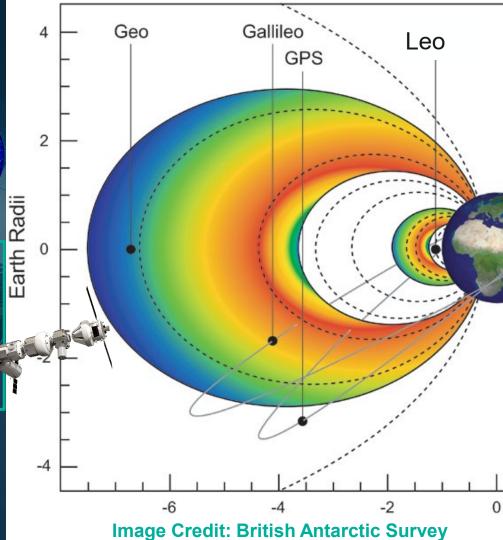
HRE – Hosting Instrumentation on future Lunar Gateway and Mars Sample Return Earth Return Orbiter missions

The above directorates all participate to the ESA Heliophysics Working Group aiming to optimize interactions

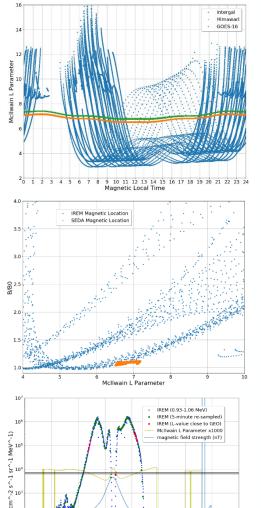
- TEL Hosting monitor on EDRS-C and facilitating other opportunities
- NAV Hosted monitors on GIOVE satellites and Galileo (limited distribution)

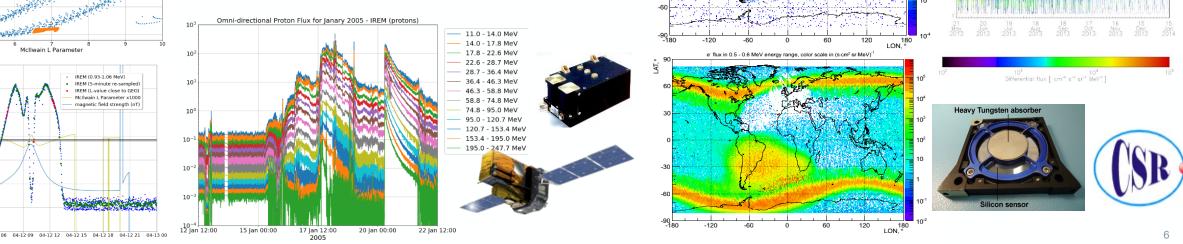
💳 📕 🛨 💳 💶 📕 🖆 💶 📕 🔤 🗮 💳 🖛 🖓

Radiation Monitor Assets



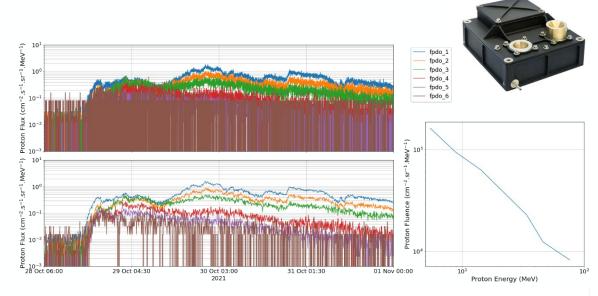
Radiation Monitor Orbital Coverage

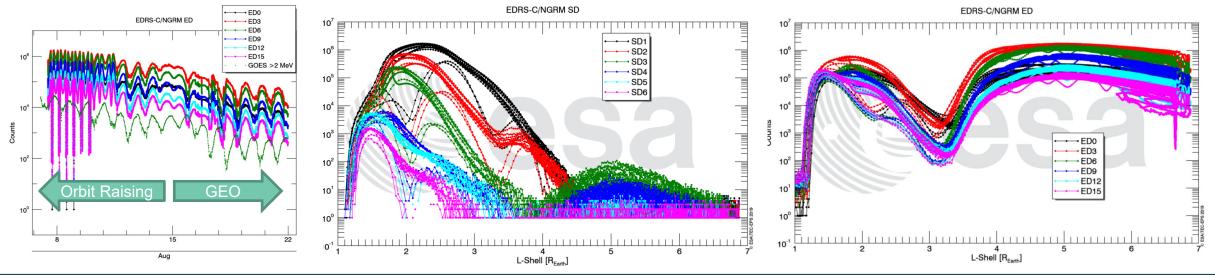

GEO Past: AlphaSat/MFS Present: EDRS-C/NGRM, MTG-I/RMU(NGRM) Future: additional MTG-I/RMU, HotBird/ICARE-NG MEO Past: Giove-A/Merlin, Giove-B/SREM Present: Galileo(GSAT 0207 & 0215)/EMU Future: Galileo 2nd Gen./tbc LEO Past: PROBA-1/SREM **European Radiation Sensor Array** Present: RadCube/RadMag (ERSA) PROBA-V/EPT+SATRAM To launch on Lunar Gateway PPE in Q4 2025 hosting: Future: MetOp-SG/RMU(NGRM) SREM, NGRM, ICARE-NG **HEO** Past: XMM-Newton/ERMD HardPix and ESA Active Dosimeter (EAD) Present: INTEGRAL/IREM Future: PROBA-3/3DEES, Lunar Gateway/ERSA Past: Herschel/SREM, Planck/SREM, Rosetta/SREM Interplane-Present: BepiColombo/BERM Future: JUICE/RADEM, Lunar Gateway/ERSA tary


→ THE EUROPEAN SPACE AGENCY

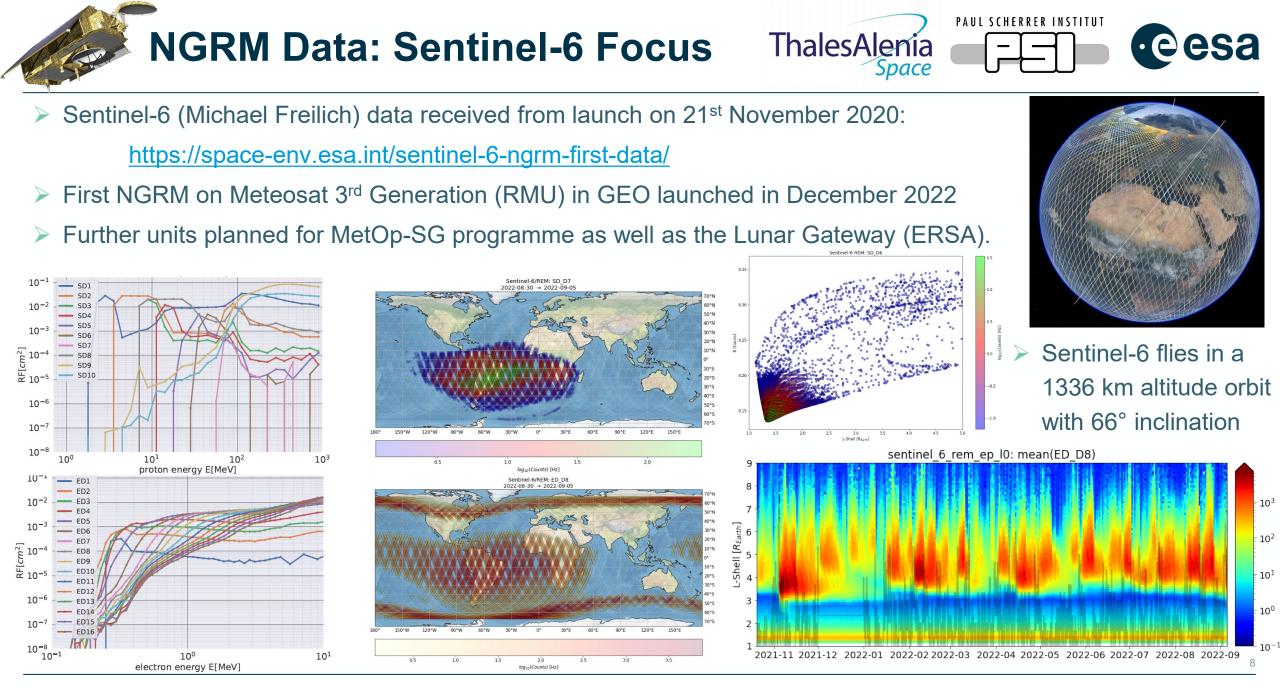
Particle Radiation Data from SREM/IREM and EPT

- SREM/IREM data provides a historical record spanning 2 solar cycles in a range of orbits in the Earth's magnetosphere and interplanetary space.
 - Electron data from 0.65 (0.55) to 2.2 (5.0) MeV
 - Proton data from 11 to 250 (400) MeV
- > EPT is a spectrometer flying in LEO for 10 years onboard PROBA-V
 - Electron data from 0.5 to 20 MeV
 - Proton data from 9.5 to 300 MeV
 - > Alpha particles from 38 to 1600 MeV
- Available via ODI
- And SWE portal: <u>https://swe.ssa.esa.int/</u>



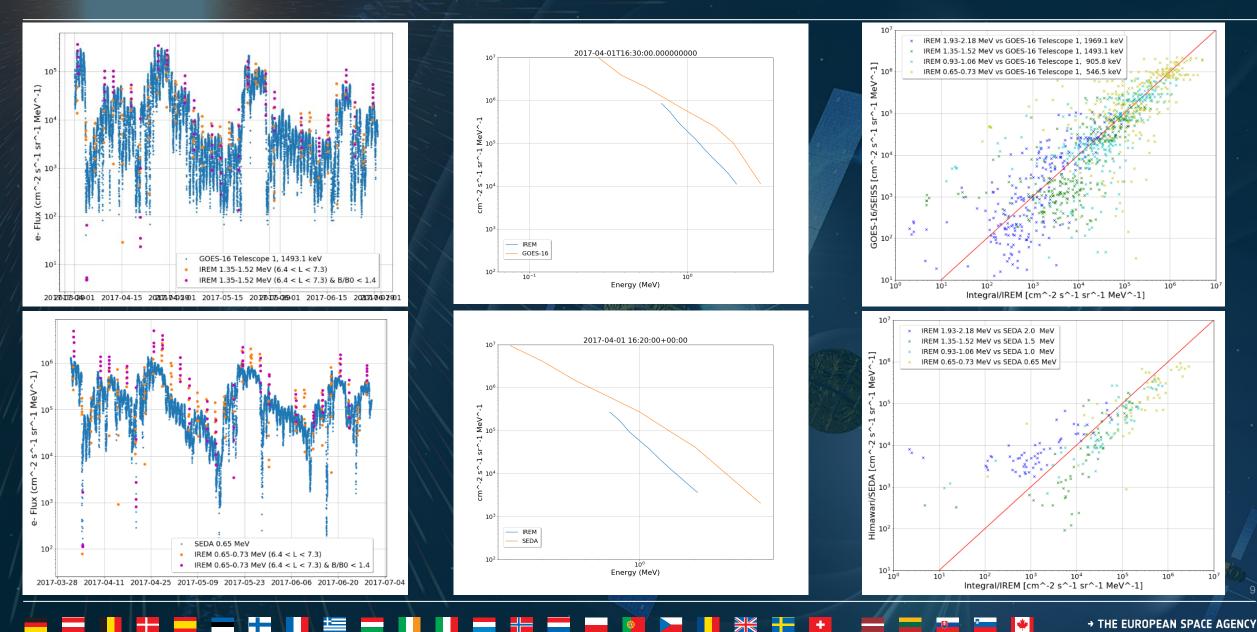

If the European space agency

EDRS-C/NGRM



- Next Generation Radiation Monitor (NGRM) was designed by PSI and developed by Thales Alenia Space Switzerland
 - Electron data from 0.35 to 2.6 MeV
 - Proton data from 2 to 200 MeV
- Images below show the first data from 1st flight of the Next Generation Radiation Monitor (NGRM)
- Right shows observations from a solar particle event (GLE73)
- Publications: <u>Desorgher et al. 2013</u> & <u>Sandberg et al. 2022</u>

💶 📕 🚍 🔤 🛶 📲 🔚 📰 🔚 📕 📲 🚍 🛶 🚺 🕨 👫 📲 🖬 📟 📾 🖬 👘 🔶 The European space agency


📕 🔜 📕 🚍 💳 🕂 📲 🔚 📕 🔚 📲 📲 🔚 🔤 🐜 🚺 👫 📲 🛨 📰 📾 🛤 🖬 👘 🔹 The European space agency

Cross-Comparisons with GEO measurements

+==

╬

 $\mathbf{*}$

ESA's operational particle radiation data

- Within the context of the Space Safety Programme (S2P) data can be accessed either through the web interface or related direct data access with use of S2P credentials.
- S2P data is served via a HAPI (Heliophysics Application Programming Interface)-compliant specified data interface meaning that the metadata is rather complete so when a user retrieves the data it is self-described.
- ESA pulls large datasets into local repositories for further exploitation, in particular where this is more efficient when performing a complete analysis over such datasets rather than "on-thefly". These datasets are stored in a (MySQL ODI) database, and where the data is already a public resource made available with public API access.
- ESA respects the desires of the data providers to not have others re-serve their data to the public and provides full referencing and credit as appropriate.

Accessing the Data

ESA provides databases access making use of the Heliophysics API (HAPI): <u>https://cdaweb.gsfc.nasa.gov/registry/hdp/hapi/</u>

- For development ESA's Open Data Interface (ODI) is a MySQL database providing numerous interfaces to programming languages
 - ODI Client Interfaces include: Python, IDL, Matlab, PHP, Java
- Data model based on the NSSDC/CDF file format tailored to COSPAR PRBEM dataset standard:

https://prbem.github.io/documents/Standard File Format.pdf

- Access to datasets via direct database socket/port, REST or HAPI
- ESA worldwide open source license
- Export datasets to CDF or netCDF files for dataset distribution
- Operationally S2P provides data via ESA's Space Weather (SWE) portal
- This includes EDRS-C in GEO: <u>https://swe.ssa.esa.int/ngrm.</u>
- More radiation data sets will be made available in real-time where possible

	[n [1]:	<pre>import parks as pd from datetime import banks as pd from datetime import she import apply as sub import maps anp from datetime import datetime plt.rcParams['figure.figsic'] = [15,12] plt.rcParams['fort.size'] = 14</pre>
	[n [2]:	username='pjiggens' password=getpass.getpass(f'Password for (username) account:')
		Password for pjiggens account:
	[n [3]:	s2ph = swh(username, password, debug=False)
1	[n [4]:	proton_energies = np.array([5.51, 8.8, 14.3, 33.92, 46.06, 76.24]) #from Sandberg et al. 2022
	[n [5]:	search_term = 'edrsc.*ngrm.*bt' Catalog*sJh.get_hat_Latalog() is = catalog.Filter(regevseerch_term,axis=0)
	[n [6]:	<pre>print('(search_tere) matching in IDs:') for i f int(f('itis').values:</pre>
		edrsc.*ngrm.*bt matching in IDs: EDRS-C/NGRM integral electron and differential proton fluxes
	[n [7]:	<pre>id = ids.index.values[0] titlerids('title',\values[0] print(f\more than one IDs match, using first: (id)') id = ids.index.values[0] print(id) infors2ph.ge_hpmi_info(id)</pre>
		<pre>spase://SSA/NumericalData/EDRS-C/gsoc_edrsc_ngrm_spid204030252_science_ep_l1_bt_v3</pre>

HAPI interface to access EDRS-C/NGRM data

A note on standard vocabulary – Data Levels

- This is a starting point to understand what we mean in earlier slides.
- Sometimes all Level 1 data is listed as being fluxes which deviates from the definition from Lunar Gateway below

Data level	Definition	Distribution CGMS
	Raw, reconstructed, unprocessed instrument, payload, and platform Data; all communications artefacts, e.g., synchronization frames, communication headers, duplicate Data are removed. These Data will typically consist of binary CCSDS standard packets. On-ground calibration, testing and simulation Data, including the derived instrument response functions.	
Level 1A	Fully de-commutated but un-calibrated raw Data at full resolution, real time-referenced; also extracted telemetry item.	Not foreseen
Level 1B and	Level 1B (extracted telemetry items) to which engineering calibrations have been applied;	Public (real-time)
	Data have been annotated with ancillary information (e.g., ephemeris, attitude Data) and initial instrument-level science calibrations have been applied. Scientific Data products that are generated using simplified science processing algorithms and/or with provisional calibrations. These Data are intended to provide basic scientific insight. Generation of these Data will occur as quickly as possible, whereas routine production of Level 2 (and higher) products may take considerably longer.	
Level 2	Level 2 Data have been processed from Level 1 Data to physical units and/or derived geophysical parameters by combining calibration, ancillary, and other Data (i.e. cross/inter-calibrations). These Data represent research grade scientific Data and exist at the same time and/or spatial resolution as Level 1 Data.	capture)
		12

Thoughts on GSICS "Operational Framework"

- With regard to particle radiation data, Framework should comprise of:
 - Central portal with documentation (standardised way of reporting)
 - Directs user to verified/official data sources
 - Example code for getting data in addition to guidelines for algorithms
- > A portal for data discovery to serve results of inter-calibration efforts and documentation of those efforts.
- Reasons for framework to have only example code, documentation and links to points of access are:
 - 1. maintainability of the system;
 - 2. the requirement that end users get data from the source (we can see from the above that there are ways to accommodate this second requirement in a centralized framework however);
 - 3. the user should be encouraged to get data from as close to original source as possible.
- Contributing entities would
 - Provide and maintain their Data available pointed to from the framework/portal in Level 1b (real-time) and Level 2 (within ~6 months). This should include API (+ file-based) access.

+

- description of data (metadata) so the data can be used
- Some description of instrument and its calibration (and preferably response functions) for getting to Level 1b
- Inter-calibration report (inter-calibration parameters) with "gold standard" for getting to Level 2