

Implementation of Revised DCC Calibration ATBD for GEO Imager VIS and NIR Bands

Raj Bhatt, David Doelling, Conor Haney, Benjamin Scarino, Arun Gopalan, and Prathana Khakurel

CERES Geostationary and Imager Calibration Group

NASA Langley Research Center

GSICS Annual Meeting Feb 27-Mar 3, 2023

Contact: rajendra.bhatt@nasa.gov

Objectives

- Characterize tropical DCC response at the top-of-atmosphere using the latest dataset (Collection 2.1) of NOAA-20 VIIRS L1b radiances from NASA Land SIPS
- Provide regional-dependent reference DCC mode and mean values based on reflective solar bands measurements from VIIRS to facilitate consistent radiometric scaling of GEO imagers using DCC-IT (no need for agencies to download or process VIIRS data)
- Provide guidance on consistent implementation of DCC-IT algorithm across agencies and sharing of best practices
- Support effort for publishing a joint agency peer-reviewed article on DCC-IT based calibration
 - include agency-specific implementation and validation results

Revised DCC-IT Calibration ATBD highlights

- Significant improvement upon the 2011 DCC ATBD
- \bullet Extends the methodology to all spectral channels between 0.4-1.0 μm
- Uses the most recent and well-calibrated NOAA-20 VIIRS sensor as a reference instrument for DCC characterization
- *IR BT threshold normalization between GEO and VIIRS for consistent DCC sampling and response*
- Seasonal corrections of GEO imager monthly DCC response
- Spectral corrections using NASA Langley's robust online SBAF computation tool (https://cloudsway2.larc.nasa.gov/cgibin/site/showdoc?mnemonic=SBAF)
- PDF bin optimization (0.2-0.4% of Mode)

GEO Imagers DCC Identification Domains

±20° Lat/Lon from the GEO sub-satellite point

DCC Characterization using NOAA-20 VIIRS

- Identify DCC pixels within GEO domain using M15 (10.8 μm) BT < 205 K
- Filtering
 - Spatial homogeneity tests for filtering DCC edges
 - $\sigma_{VIS} < 3\%$ and $\sigma_{BT} < 1K$ for the 3x3 pixel block surrounding a DCC pixel
 - Angular thresholds for capturing the most Lambertian part of DCC
 - SZA < 40°, VZA < 40°, 10° < RAA < 170°

Anisotropic Corrections

- Apply COS(SZA) and Earth-Sun distance corrections
- Apply Hu Angular Direction Model (ADM) to scale all DCC pixel radiances (wavelengths < 1 μm) to a common set of solar and viewing conditions
- Compile DCC pixels into monthly probability distribution functions (PDFs) and compute their statistical mean and mode values
- Derive mean and standard deviation of monthly DCC mode timeseries after deseasonalization
- **Update:** Uses NOAA-20 VIIRS C2.1 L1b product from NASA Land SIPS
- Full first 5 years of VIIRS record used

Reference VIIRS DCC Mode Radiances ($L_{VIIRS,Mode}$) for GEO domains

NOAA-20 VIIRS based reference DCC radiance for GEO domains (based on ~5 years of observation)										
Band	Global	GOES-W	GOES-E	OE	41E	57E	82E	100E	120E	140E
M3_0.48um	573.3106	574.2886	574.1561	576.2417	574.4566	571.7466	570.5536	569.9536	570.099	570.7167
M4_0.55um	506.1241	507.2404	507.3154	509.054	507.582	504.6942	503.8166	503.6269	503.9973	505.1976
M5_0.67um	431.1717	432.3336	431.6643	433.5389	432.783	430.4023	429.1947	429.1932	429.7318	430.409
M7_0.86um	269.8475	269.7048	270.5088	271.2723	271.2081	269.4268	268.7202	268.6634	268.8952	269.1443
M8_1.24um	97.5102	97.4311	99.0111	99.9722	99.7063	97.6039	96.8815	96.8926	96.707	96.5699
M9_1.38um	68.5258	68.9824	71.2152	72.1015	71.7712	68.4424	67.3299	67.204	67.2569	67.2638
M10_1.6um	18.2495	17.826	18.598	19.2765	19.1919	18.2991	18.0388	18.1599	18.0086	17.8656
M11_2.25um	8.8133	8.6687	8.9759	9.216	9.1906	8.8266	8.7207	8.7579	8.7153	8.6702
l1_0.65um	440.6533	440.868	441.5347	442.7679	442.2879	439.5295	438.2284	438.0925	438.8077	438.9072
I3_1.6um	17.9934	17.5606	18.3323	18.9992	18.9191	18.0429	17.7872	17.9074	17.7608	17.6196
Temporal standard deviation (%)										
Band	Global	GOES-W	GOES-E	OE	41E	57E	82E	100E	120E	140E
M3_0.48um	0.3224	0.7362	0.4648	0.5545	0.4794	0.6457	0.6529	0.4954	0.6257	0.5707
M4_0.55um	0.3828	0.8147	0.539	0.55	0.5102	0.812	0.7524	0.5202	0.7637	0.5621
M5_0.67um	0.3014	0.7365	0.4421	0.4593	0.3891	0.6223	0.5968	0.445	0.6345	0.5113
M7_0.86um	0.2532	0.6018	0.2988	0.3525	0.3681	0.4237	0.4422	0.3526	0.4553	0.4666
M8_1.24um	0.323	0.884	0.2876	0.4206	0.8008	0.6556	0.529	0.5354	0.5533	0.5497
M9_1.38um	0.768	1.9258	0.6587	1.0579	1.8741	1.5701	1.3559	1.2823	1.3041	1.2425
M10_1.6um	0.6682	2.3391	0.8873	1.1625	1.8501	1.5523	1.2395	1.0369	0.9909	0.9824
M11_2.25um	0.5209	1.765	0.6386	0.8359	1.5041	1.1304	0.9324	0.8365	0.8199	0.8054
l1_0.65um	0.3432	0.8554	0.4763	0.6018	0.5274	0.6881	0.7027	0.453	0.6328	0.5237
I3_1.6um	0.7027	2.215	0.854	1.1647	1.8416	1.5651	1.2669	1.0557	0.9961	0.9982

• For visible channel (0.65 μm), two sets of reference mode values are provided (M5 and I1)

SWIR bands

Units of these mode radiances are Wm⁻²μm⁻¹sr⁻¹

GEO Imager DCC pixel identification and Processing

- DCC method does not require coincident measurements between GEO and VIIRS
- Five GEO images per day surrounding the 1:30 PM local time (equator crossing time of NOAA-20) are used for DCC sampling
- Angular thresholds and spatial homogeneity tests are the same as that used for the VIIRS DCC samples
- IR BT threshold may need to be adjusted for GEO
 - to account for any differences in SRFs and calibration of the IR channels between GEO and VIIRS
- VIIRS based reference mode radiances must be adjusted to account for the SRF differences (apply SBAF) between the GEO and VIIRS visible channels

IR BT threshold normalization

- GOES-16 ABI and Himawari-8 AHI IR channels would measure DCC BT slightly warmer than NOAA-20 VIIRS M15, provided they are all consistently calibrated
- A DCC pixel with a BT of 205 K measured by VIIRS M15 is recorded as 206.1 K by GOES-16 ABI B14
- For consistent DCC sampling between GEO and VIIRS, the GEO IR BT threshold must be adjusted to equivalent VIIRS BT
- The magnitude of BT adjustment might change over time depending upon the temporal stability of the IR calibration onboard GEO and VIIRS

IR BT threshold vs DCC Samples

- IR BT threshold affects sample size
- Exponential relationship between sample size and BT threshold
- Adequate and consistent sampling is a key to the success of DCC method

Implementation: Computation of monthly GEO calibration slope

Eqn. 1 $L_{GEO,Mode,reference} = SBAF \times L_{VIIRS,Mode} (Wm^{-2}\mu m^{-1}sr^{-1})$ Constant in time, as long as reference

$$\gamma_{cross-cal} = \frac{L_{GEO,Mode,reference}}{L_{GEO,Mode,observed}}$$
(unitless)

Eqn. 3 $\gamma_{GEO,cal-slope} = \frac{L_{GEO,Mode,reference}}{C_{GEO,Mode,observed}} (Wm^{-2}\mu m^{-1}sr^{-1}/Count)$

From Table in slide 8 Constant in time, as long as reference instrument and data collection stay same

L stands for Radiance*C* represents Counts

 $L_{VIIRS,Mode}$ is the reference DCC mode radiance derived from VIIRS measurements $L_{GEO,Mode,reference}$ is the estimated mode radiance for a GEO after adjusting $L_{VIIRS,Mode}$ for spectral differences $C_{GEO,Mode,observed}$ is the observed GEO DCC mode count (*Space count is subtracted from GEO counts before computing the mode*)

- Inter-comparison between GEO and VIIRS spectral channels can be performed by comparing their monthly mode values
- If both imagers DCC modes are in radiance units, their ratio provides the cross-calibration coefficient ($\gamma_{cross-cal}$)
- If GEO DCC modes are in counts, the ratio of VIIRS mode radiances over GEO mode counts estimates the monthly calibration slope for the GEO imager (γ_{GEO,cal-slope})
- Prior to these operations,

Eqn. 2

- VIIRS mode radiance must be corrected for spectral differences using SBAF
- Space count or sensor offset must be subtracted from the GEO counts

Uncertainty Analysis

• Major sources of uncertainty for GEO-VIIRS intercalibration

- Uncertainty in the reference mode value from VIIRS (U_{Ref})
 - Temporal standard deviation (1-Sigma) of DCC time series (DCC reflectance natural variability over the GEO domain)
- SBAF uncertainty (U_{SBAF})
 - Standard error of Regression Slope from SBAF tool
- Temporal regression uncertainty (U_{RegFit})
 - Standard error (1-Sigma) of GEO calibration slopes temporal regression
- Only random uncertainties based on natural variability are considered
- Absolute radiometric uncertainty of NOAA-20 VIIRS (±2% for RSB) is not considered
- Total uncertainty (U_{Total}) is computed by summing individual uncertainties in quadrature to

$$U_{Total} = \sqrt{U_{Ref}^2 + U_{SBAF}^2 + U_{RegFit}^2}$$

• Other sources of uncertainty could be from BT normalization, SCIAMACHY relative calibration inconsistency between channels, SRF changes in orbit, PDF bin sizes, etc. Not addressed in current ATBD

GSICS Products

- Two sets of netCDF files
 - 1. N20_VIIRS_DCC_Mode_VIS_NIR_v1.nc
 - **Contains reference sensor details:** band information, DCC mode information for specific GEO domain and units, standard deviation, uncertainty, L1B collection info, NASA or NOAA dataset, etc.
 - 2. GOES16_ABI_DCC_PDF_2020_01_v1.nc
 - **Contains GEO sensor details:** space count, channel information, linear/squared count, scaled radiance or count bit resolution, BT threshold, homogeneity test parameters, ADM, etc.
 - Monthly GEO imager DCC PDF data and statistics

Timeframe

- First draft of revised DCC ATBD was presented in June 2021
- Discussed and addressed reviewers' feedback in March 2022
- Earlier target for final ATBD release was July 2022
- New targeted date for ATBD completion and reference DCC mode and uncertainty tables delivery is May 2023
- Joint DCC implementation paper

Summary

- DCC are an excellent invariant target for post-launch radiometric calibration of satellite sensors.
- DCC can be referenced to a well-calibrated sensor (MODIS or VIIRS) for transferring absolute calibration to other GEO and LEO sensors.
- □ The revised GSICS DCC ATBD offers several improvements:
 - Extends the methodology to all spectral channels between 0.4-1.0 μm
 - Inter-calibration uncertainty is reduced by applying
 - IR BT threshold normalization between GEO and VIIRS
 - Deseasonalization of monthly DCC responses
 - Uses the most recent and well-calibrated NOAA-20 VIIRS sensor as a reference instrument for DCC characterization
 - Provides more comprehensive details on the formulation and implementation of DCC method
 - Reference DCC modes for multiple GEO domains based on stable 5 years NOAA-20 VIIRS record, SBAF computation, uncertainty analysis, GSICS DCC products
- In future, a dedicated ATBD will be presented for calibrating SWIR bands using DCC

Backup slides

DCC Calibration in Reflectance

- Scenario 1: Using L1B reflectance data for both VIIRS and GEO
 - Most preferred method (no dependency on reference solar spectra)
 - e.g., VIIRS, GOES-16 ABI, and SCIAMACHY are all reflectancebased calibration

 $\gamma_{cross-cal,reflectance}$

$\frac{\rho_{VIIRS,Mode \times SBAF_{reflectance}}}{\rho_{GEO,Mode}}$

- ρ is reflectance
- $\rho_{VIIRS,Mode}$ is the reference VIIRS mode reflectance which can be derived from VIIRS DCC PDFs in reflectance, or from mode radiance (slide 8) as follows:

 $\rho_{VIIRS,Mode} = L_{VIIRS,Mode} / E_{SUN}$

VIIRS E_{SUN} values using Thuillier 2003 Spectra

NOAA-20 VIIRS band	E _{SUN} (W m ⁻² μm ⁻¹ sr ⁻¹)
M3 (0.48 μm)	629.313
M4 (0.55 μm)	581.771
M5 (0.67 μm)	481.029
M7 (0.86 μm)	302.320
l1 (0.65 μm)	505.409

NASA Langley's E_{SUN} computation tool

https://cloudsway2.larc.nasa.gov/cgibin/site/showdoc?mnemonic=SOLAR-CONSTANT-COMPARISONS

NOAA-20 VIIRS uses Thuillier 2003 solar spectra for computing $E_{\mbox{\scriptsize SUN}}$ values

- $\rho_{GEO,Mode}$ is a monthly GEO DCC mode in reflectance unit
- SBAF_{reflectance} is the spectral correction in reflectance (Select "Pseudo Scaled Radiance" from Units column on the SBAF tool)

(unitless)

DCC Calibration in Reflectance (contd.)

• Scenario 2: Using GEO L1B radiances

- Convert GEO Mode radiance to reflectance using E_{SUN}
- Apply the solar spectra (Thuillier 2003) used by the reference NOAA-20 VIIRS instrument to compute GEO E_{SUN} values

 $\gamma_{cross-cal,reflectance} = \frac{\rho_{VIIRS,Mode \times SBAF_{reflectance}}}{\rho_{GEO,Mode}}$ (unitless)

ABI E_{SUN} values using Thuillier 2003 Spectra

GOES-16 ABI band	E _{SUN} (W m ⁻² μm ⁻¹ sr ⁻¹)
B1 (0.47 μm)	648.717
B2 (0.64 μm)	509.719
B3 (0.87 μm)	303.909

NASA Langley's E_{SUN} computation tool

https://cloudsway2.larc.nasa.gov/cgibin/site/showdoc?mnemonic=SOLAR-CONSTANT-COMPARISONS