SLIMED: A lunar calibration model based on many instruments and one Moon

Hugh H. Kieffer Celestial Reasonings hhkieffer@gmail.com

Status of the SLIM lunar calibration model Introduction: see CALCON 2019 invited talk https://digitalcommons.usu.edu/calcon/CALCON2019/invitedspeaker/1/

30 sec Intro. What are Lunar Calibration and a Lunar Model?

Treat the Moon as a cheap, aged, mottled but stable (10⁻⁸ /year) diffuse reflector that is routinely (monthly) available with wobbly but exactly known (<0.000015° viewing, 4x10⁻¹² illumination) geometry (compliments of Newton, Einstein and JPL) <u>illuminated by a fairly stable lamp (the Sun) that also</u> lights your science target.

Goal: What is the effective reflectance of this gift as a function of the illumination and viewing angles.

SLIM Summary

There is only one Moon; its reflectance must be smooth in all photometric and spectral dimensions.

Initial SLIMFIT mapped each instrument band onto a fixed set of model bands Using a spectral transform matrix for each instrument SLIMED, each point has its own geometry and effective wavelength; no spectral transform

Normalize to fixed solar and lunar reference spectra, then fit with polynomials in 'wave' Select intrmumnts to include in fit; usually omit wide (pan) bands. Large matrix inversion, typically 100,000 x 35 In words is simple, math is a little complex

Libration effect has been a major challenge, Use global albedo maps from lunar orbiters to model libration effect.

Evaluate all instruments on hand with one model Useful for relative response comparisons; <u>large differences</u>

> SLIMED model is continuous in all dimensions. Residuals over all instruments are comparable to ROLO About 30 terms instead of 328 ! Many little things still to be addressed, but the basic result is firm.

The Lunar Reference Spectrum

Telescope and Lab measures. ROLO and SLIM use ApolBrec05; Depends upon shape only, not the absolute level.

bandfig@41 Lunar surface albedo

Thu Jun 13 15:21:46 2019 Kieffer bandfig@41 GSICS Webex: Lunar Modeling 2020nov16

Method

Ingest instrument data into standard formats
All table driven. Define each instrument data set
Select instruments to include in fit: Judgement Judgement
Assign band or point uncertainties (teams should do this).
Assign instrument 'Heft' to account for number of data points
Convert input location and time to photometric angles, adjust to std distances
Do ROLO calibration. If indication of trends, fit and apply
Select geometric and wave basis functions to fit.
\Rightarrow \Rightarrow Make fitReady file: all points, bands (unity gain), selected instruments
Decide whether to apply Libration Model correction
$\hat{\mathbb{I}}$ Select basis functions, and what power of wave for each, to include.
$\uparrow \Rightarrow$ Do the fit. (~30 x 111,019 matrix inversion) Look at results.
1 1 Key metric, Mean absolute weighted residual
Also: check symmetry to perturbations of each coefficient
$\hat{1}$ $\hat{1}$ Mean weighted residual for each band is the gain factor: apply it
$\uparrow \uparrow \uparrow \leftarrow$ Loop on this until convergence. First N loops automatic, then query.
1 Calibrate the instruments,
↑ Can check for trends in calibrated data, apply them.
íl∉ Do again
Output: A lunar model, and empirical gain factor for every instrument band. Can then use this model to calibrate any/all instrument observations

pseudo-Equations

In both cases, can select any subset of terms.

Fit lunar albedo maps by band: [1, x, y, x², y², xy] * [1, p, p², g,1/p] 30 terms x=Viewer lon., y=Viewer lat., p=signed phase, g=absolute phase Units [for numerical stability]: x and y in degree/10, p and g in radians
Fit all bands at once, using all these * λ [select 1 of 3 versions], total 60 terms. Down-select to about 20 most important terms

Fit instrument irradiance: polynomial in: g, 1/g, x, y, Hlon*x and Hlon*y Units: x and y in degree, g in radians
Hlon, sub-solar longitude (~=p), radians, to odd powers
Hlat, sub-solar latitude, degree, linear only (small range)
Any of these terms may be polynomial in wave: λ or 1/λ or ln λ
Typically, 20 to 50 terms

Estimate libration effect using Clementine maps

Sources:

Clementine: all nadir, so shadows increase poleward relative to Earth view UVVIS (5 bands) to the poles, noisy beyond ±59°
NIR (6 bands, omit longest two; thermal influence), to ±70°
Lunar Orbiter Laser Altimeter, LOLA, 1.084 μm, to the poles, nadir, 0-phase

Source maps generally high resolution; reduce to 8 pixels/degree Fill poles with bland average where needed; 6% of view Synthesize orthographic image assuming Lunar-Lambert photometry A mix of Lambertian and Lommell-Seeliger photometric function Lambert fraction increases with absolute phase angle Normalize to zero libration

Compute grid of irradiance: Vlon and Vlat: [-8, -4, 0, +4, +8], 25 points p=Phase angle: [3, 8, 14, 20,3 0, 40, 50, 60,7 0, 80, 90] and – these, 22 points Total of 550 points / band

5500 points. About 20 terms model most of the effect

Synthetic Moon based on LOLA albedo

8 pixel/deg Simple cylindrical map Reprojected to 700 pixel diameter

> Phase -45° Vlon +8 Vlat -4 Hlat 0

Actually bypass the projection and use pixel apparent solid angles

Libration effect, 4 dimensions Wavelength, phase, Viewer longitude and latitude

Small variation with wavelength, and shape is suspicious

ROLO treated this as 2-D, linear in Vlon and Vlat

Libration coefficients: Maps and SLIMED

+7, SeaWIFS and OLI

Some agreement

Instruments that provided Lunar irradiance

Instrument	Acro-	Num	Luna	Num	Num.	Obs.	Date	pł	nase a	angle
	nym	band	tions	Times	pts	First	Last	min r	nin.At	os max
LE	EO									
SeaWIFS	SeaW	8	143	145	1160	97Nov14	10Nov22	-7.9	5.1	10.1
Hyperion	НурМ	26*	18	20	520	13Feb26	16Feb23	-28.3	6.9	29.4
MODIS-Terra	MODT	20	192	949	18980	00Jul22	19Feb23	47.9	47.9	81.5
MODIS-Aqua	MODA	19	175	743	14117	02Dec13	19Feb15	-79.9	36.9	-36.9
Suomi-NPP	VIIRS	14	70	71	994	12Jan04	20Mar05	-56.2	49.8	-49.8
Landsat-8	OLI	9	70	1080	9720	13Mar26	19Jan21	-8.4	5.4	9.7
PLEIADES-A	PleA	5	61	141	705	12Jan02	17Apr07	-94.6	2.1	111.9
PLEIADES-B	PleB	5	42	339	1695	13Feb17	17Apr07	-101.5	1.4	101.6
		د	*242 ra	aw ban	ds, 20	04 useful,	average	ed into	26 ba	ands
GE	EO									
GOES-8	GS8	1	38	44	44	95Jan08	03Feb20	-91.1	4.3	84.1
GOES-9	GS9	1	7	9	9	95Dec12	98Apr12	-70.4	10.0	82.4
G0ES-10	GS10	1	40	49	49	98Aug09	06Jun06	-89.3	7.3	89.6
G0ES-11	GS11	1	49	77	77	06Sep08	11Dec04	-87.6	4.5	89.9
G0ES-12	GS12	1	38	49	49	03Apr14	10Mar02	-83.4	6.8	66.5
G0ES-13	GS13	1	26	47	47	10Jul30	13Nov14	-76.9	6.4	74.3
G0ES-15	GS15	1	14	28	28	12Mar06	13Nov14	-52.8	2.6	69.0
otł	ner									
2148m	R0L0	32	30	1249	39968	98Jul03	00Dec17	-124.7	1.4	109.3
2367m	NIST	9	1	2	18	12Nov30	12Nov30	19.8	19.8	19.8
HiRISE Mars	HiRIS	3	1	4	12	16Nov20	16Nov20	69.6	69.6	69.6

Instruments

inst	band	date	Uncert	heft	effUnc	Tot.W%	
ROLO	32	2462	0.025	0.05	0.112	16.12	
OLI	9	1080	0.03	1.00	0.030	27.61	
НурМ	26	20	0.10	1.00	0.100	0.13	
MODA	19	743	0.05	1.00	0.050	14.44	
MODT	20	949	0.05	1.00	0.050	19.41	
VIIRS	14	71	0.05	2.00	0.035	2.03	
SeaW	8	145	0.03	4.00	0.015	13.18	
PleA	5	141	0.05	5.00	0.022	3.61	
PleB	5	339	0.05	2.00	0.035	3.47	
			l mv est	timate	Help	me out l	he

S

Calibrated, but not used in model construction

Inst	#band	#da	te				
GS8	1	44					
GS9	1	9					
GS10	1	49					
GS11	1	77					
GS12	1	49					
GS13	1	47					
GS15	1	28					
NIST	9	1	Moun	taint	ор		
HiRIS	5 3	4	from	Mars			
SEVIE	1 - 1 : 4.	. 4	bands	. 181	to	34	date

Prep.: Trends and wild points

Look for points that are statistically unlikely, assign huge uncertainty

Five kinds of trend fits: use simplist that works well $Y = c_0 + c_1 t$ $Y = c_1 e^{-t/\tau}$ $Y = y_1 + (y_2 - y_1) e^{-t/\tau}$ $Y = c_0 + c_1 t + c_2 e^{-t/\tau}$ Used for VIIRS $Y = c_0 + c_1 e^{-t/\tau} + c_2 e^{-t/\tau'}$

A SLIMED model: 22 terms, with LibModel

A 34-term model with LibModel is indistinguishable from this

Reality plot implications

Lunar calibration differences between instrument datasets are significant. Probable Causes:

Hardware techniques: Changes between nadir look and lunar look

- Change in optics from a Z-axis observation
- Response changes, thermal load effect.

Processing techniques: Extracting the lunar irradiance from an lunar observation Myriad of possibilities, all addressable!

A few comments

Model fine for trending

Still big uncertainty in absolute levels Need absolute above-atmosphere observations Would help to have reference spectrum of undisturbed lunar soli

SeaWIFS about 5 % below others. Below 850 nm general agreement except for VIIRS. Some MODIS bands long of 1µ are inconsistent.

Backup slides follow

Sources of error

			in ppm		
Item	expression	Native	Typical	Best	
Nadir vrs Moon	attitude, hardware	-	? 10,000		
Oversampling	\propto calib.	Y size	†7 ? 1000	100	
Image artifacts	ghosts, flare	1% ?	? 10,000	? 1000	
Solar variability	most in UV	1/	1000	300	
Scan uniformity †3	$\epsilon \cdot \nabla I$	1/100 ?	†4 1000	?	
Cross-track pixel scale	$\Delta \alpha / \alpha$	-	OLI 5800	? 10	
Frame image distortion	$\propto heta^3$?	? 10	? 10	
Image time	-	$1~{\rm sec}$ =7.6 km	20	$\dagger 6$? ~ 1	
Moon not a sphere	$\Delta h/R$	1/1737 local	†1	†2 0.2	
Lunar surface	Global reflectance	0.01 ppm/yr	$\ll 1$	$\ll 1$	
Spacecraft ephemeris	U, one axis	1 KM ?	2.6	$\ll 1$	
Lunar ephemeris	ME distance	$10~{\rm cm}$	2.6e-5	$\ll 1$	
Relativity: c	d/c	$1.3 \sec$	0.4	$\ll 1$	
" Abberation	v/c	2.e-8 radian	0.003	$\ll 1$	
Model: Absolute		5% ?	50,000	? 1000	
Model: Relative		1% ?	10,000	? 100	

Error Table: Notes

- 1: Accounted for in libration terms in model, if adequately high resolution in angle.
- 2: Non-linearity in $1/\cos\theta$ over 7°[1.2e-3]; times the fractional circumference, Arbitrarily set a $1/4 \ \Delta h/R$
- 3: Fractional rate change while crossing the Moon.
 - e.g., Change in mean scan rate over first 1/2 Moon to second 1/2
- 4: Depends upon scan direction. Typical fractional radiance difference between two halves of a lunar image may be 0.1
- 5: Change in mean scan rate over first 1/2 Moon to second 1/2
- 6: If scan direction and angle across Moon are consistent
- 7: May vary widely between instruments.