GCOM-C/SGLI Lunar Calibration Evaluation

<u>Taichiro Hashiguchi</u>^a, Tomoyuki Urabe^b, Shigemasa Ando^b, Yoshihiko Okamura^b, Kazuhiro Tanaka^b, Arata Okuyama^c

^aRemote Sensing Technology Center of Japan (RESTEC) ^bJapan Aerospace Exploration Agency (JAXA) ^cJapan Meteorological Agency (JMA)

This work is based on a contract with JAXA (JX-PSPC-523224), and complies with GIRO usage policy, "Global Satellite Inter-Calibration System, GIRO and GSICS Lunar Observation Dataset Usage Policy", Version 1.0, May 2015, GSICS-RD005.

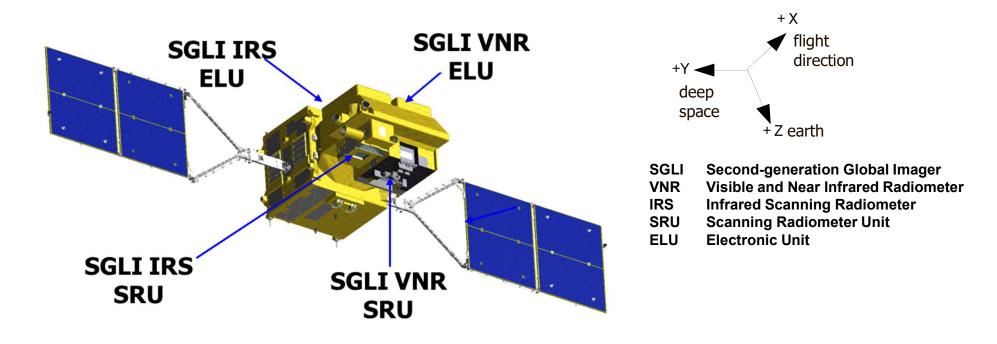
Contents

1. Introduction

- ➤ GCOM-C/SGLI overview
- ➤ SGLI specification

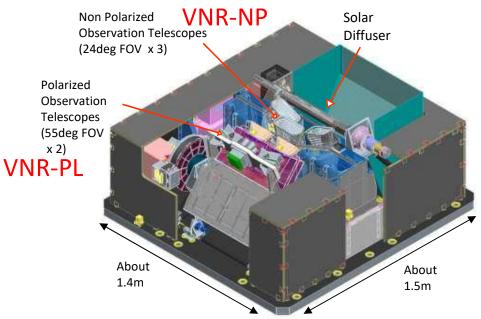
2. SGLI Lunar calibration

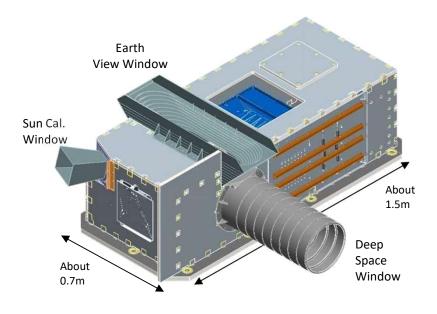
- ➤ SGLI Lunar calibration operation
- ➤ Analysis method of SGLI lunar calibration
- >Time-series trend results
- ➤Inter-comparison of the onboard calibration


3. Derivation of Calibration Coefficient

- ➤ Correction of phase angle dependence
- ➤ Validation using AHI

4. Conclusion


GCOM-C overview


- GCOM-C was successfully launched on December 23, 2017 and is continuing regular observation operations.
- ➤ The various GCOM-C scientific products have been released to public since December, 2018. [Data access --> https://gportal.jaxa.jp/]

Second-generation Global Imager (SGLI) Overview

<u>Visible and Near Infrared Radiometer</u> (SGLI-VNR)

- ➤ VNR-NP consists of three 24-degree-FOV telescopes configured in cross track direction to realize the wide FOV (70 degrees).
- ➤ VNR-PL has the tilting mechanism to observe around ±45 degrees in along track direction.

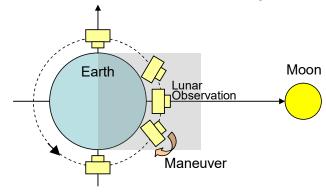
Infrared Scanning Radiometer (SGLI-IRS)

➤ The combination of the 45 degrees tilting scanning mirror and Ritchey-Chretien type telescope realize the wide 80 degrees FOV observation swath.

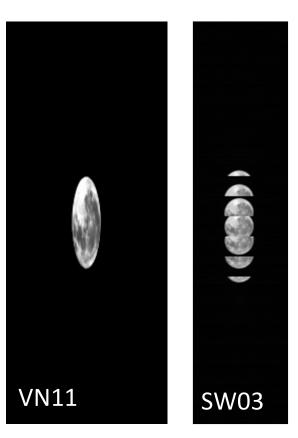
SGLI Specification

The SGLI features are <u>250m (VNR-NP & SW3) and 250/500m (TIR)</u> <u>spatial resolution</u> and <u>polarization/along-track slant view</u> channels (VNR-PL), which will improve land, coastal, and aerosol observations.

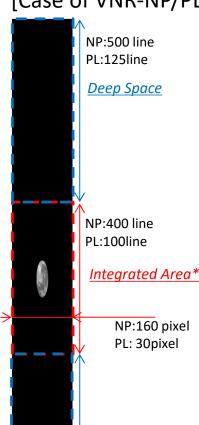
area, and 1km over offshore


		I						Thin ever eneme	
GCOM-C SGLI					SGLI	channels			
	Sun-synchronous			λ	Δλ	L _{std}	L _{max}	SNR at Lstd	IFOV
Orbit	(descending local time: 10:30)		ا ۔ ا	VNR-NP, VNR-PL,		VNR-NP, VNR-PL,		VNR-NP, VNR-PL,	
	Altitude 798km, Inclination 98.6deg		CH		VI: nm		-SWI	IRS-SWI : SNR	m
Mission Life	5 years			IRS-TIR: μm			² /sr/μm : Kelvin	IRS-TIR: NE∆T	
	Push-broom electric scan (VNR)	ſ	VN1	380	10	60	210	250	250
Scan	Wisk-broom mechanical scan (IRS)		VN2	412	10	75	250	400	250
	, ,		VN3	443	10	64	400	300	250
Scan width	1150km cross track (VNR-NP & VNR-PL)		VN4	490	10	53	120	400	250
	1400km cross track (IRS-SWI & IRS-TIR)	1,445,445	VN5	530	20	41	350	250	250
Digitalization	12bit	<u>VNR-NP</u>	VN6	565	20	33	90	400	250
Polarization	3 polarization angles for VNR-PL	Multi-angle	VN7 VN8	673.5 673.5	20 20	23 25	62 210	400 250	250 250
Along track		obs. for	VN9	763	12	40	350	1200	250/1000
direction	LAE dog and AE dog for VAID DI	673.5nm and	VN10	868.5	20	8	30	400	250
direction		368.5nm	VN11	868.5	20	30	300	200	250
	VNR-NP, VNR-PL: Solar diffuser, LED,	VAID DI	P1	673.5	20	25	250	250	1000
	Lunar cal. maneuvers, and dark	VNR-PL	P2	868.5	20	30	300	250	1000
	current by masked pixels and		SW1	1050	20	57	248	500	1000
On-board	nighttime obs.	IRS-SWI-	SW2	1380	20	8	103	150	1000
calibration	IRS-SWI: Solar diffuser, LED, Lunar, and	1113 3 7 7 1	SW3	1630	200	3	50	57	250
	dark current by deep space window		SW4	2210	50	1.9	20	211	1000
	IRS-TIR: Black body and dark current by	I IDC TID J	T1	10.8	0.7	300	340	0.2	250/1000
	deep space window	IRS-TIR	T2	12.0	0.7	300	340	0.2	250/1000


TIR: 500m resolution is also used


Lunar Calibration Operation

- ✓ The lunar observation images are captured by maneuvering GCOM-C attitude around the pitch axis.
- ✓ Pitch maneuver rate is 0.15 degree/second with high stability to obtain precise oversampled lunar image in along-track direction.
- ✓ The phase angle(Sun Moon Satellite) is around +7+/-3degree.
 - Lunar calibration concept is similar to SeaWiFS.



Analysis Method (VNR)

Analysis method of SGLI lunar calibration data

[Case of VNR-NP/PL]

Deep Space

NP:500 line PL:125line

- ✓ Removes dark noise using averaging deep space data per pixel.
- \checkmark Converts to radiance image $L_{k,p}$ using radiometric parameter.
- \checkmark To compare with lunar irradiance model, the radiance is converted to integrated lunar irradiance I_k using following equation.

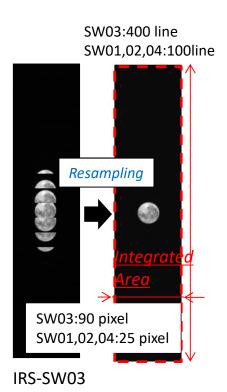
$$I_k^{SGLI} = \left(\sum_{p=1}^N \Omega'_{k,p} L_{k,p}\right)$$

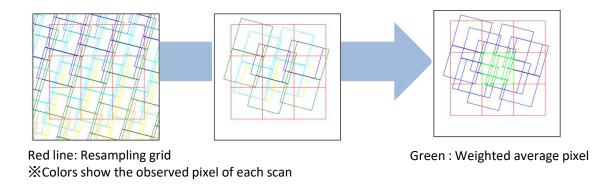
 I_k : Lunar irradiance (k=ch1~11)

N: Total number of pixel

 $\Omega'_{k,p}$: Solid angle per pixel include oversampling and $\sin \theta$ effect θ : Angle between satellite-moon vector and satellite pitch axis

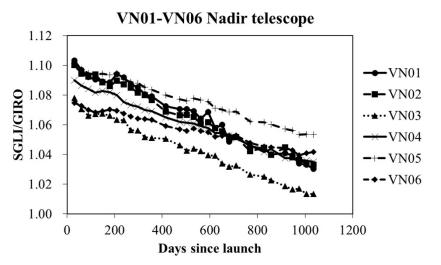
*Integrated area is defined taking into account stray light.

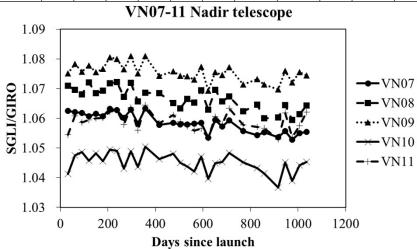

Analysis Method (IRS)

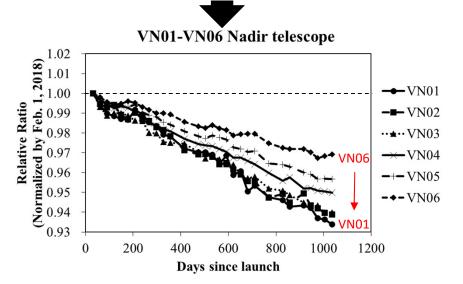

Analysis method of SGLI lunar calibration data

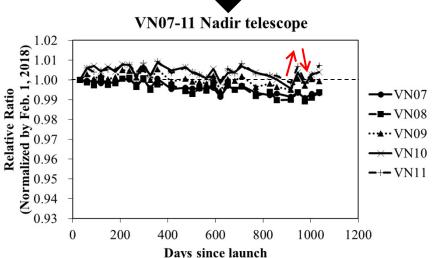
[Case of IRS-SWIR]

IRS discretely captures the moon because of whisk-broom type radiometer. Therefore, in order to obtain integrated lunar irradiance, it is necessary to round the lunar image.

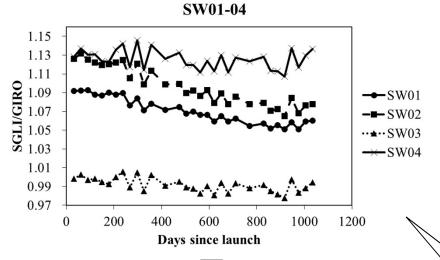

- \checkmark Converts to radiance image $L_{k,p}$ using radiometric parameter.
- ✓ The observed pixels of each detector are projected on the AT-CT plane
 in consideration of line-of-sight vector and the pitch maneuver.
- ✓ Converts to irradiance image $I_{k,p}$ using the solid angle for each pixel.
- ✓ Reconstructs the lunar irradiance image from the weighted average according to the a field of view of each detector in the resampling grid.
- ✓ The lunar integrated irradiance I_k^{SGLI} is calculated.

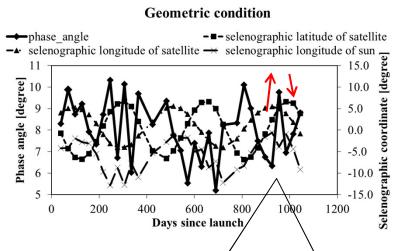

Time-series trend results(VNR)



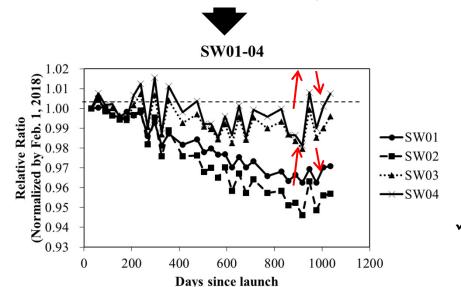


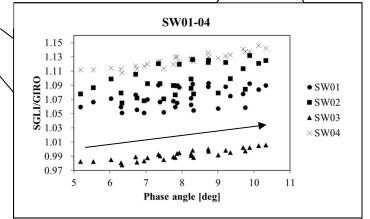
CH	VN1	VN2	VN3	VN4	VN5	VN6	VN7	VN8	VN9	VN10	VN11
WL [nm]	380	412	443	490	530	565	673.5	673.5	763	868.5	868.5


□ SGLI/GIRO Time-series trend (Normalized 2018/2/1)



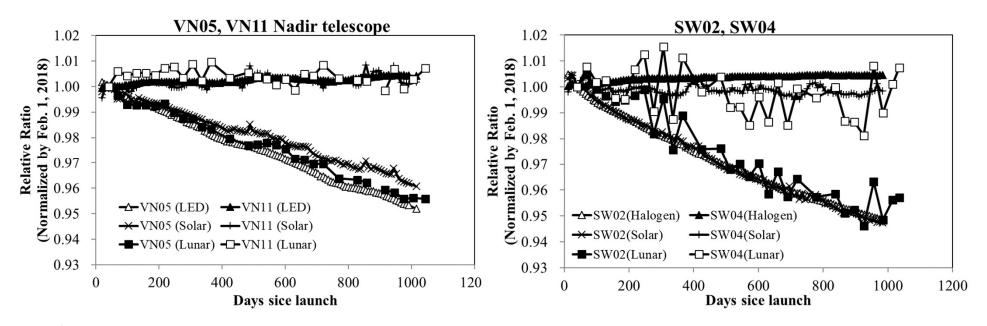
Time-series trend results(SWIR)





СН	SW1	SW2	SW3	SW4
WL [nm]	1050	1380	1630	2210

☐ SGLI/GIRO Time-series trend (Normalized 2018/2/1)



These trends indicate fluctuations synchronized with the behavior of the lunar phase angle

Inter-comparison of the onboard calibration

- Inter-comparison of the onboard calibration
 - ✓ Lunar calibration
 - ✓ Solar calibration (every 8 days)
 - ✓ Internal light source calibration (every 8 days)

- ✓ These trends are normalized with the first lunar calibration date (February 1, 2018) for comparison.
- ✓ In VNIR and SWIR bands, the inter-comparisons between in orbit calibrations are consistent within 1.0%, and these results suggest that the lunar calibration evaluation acquires the degradation characteristics of the sensor in detail.

Derivation of Calibration Coefficient

Derivation of calibration coefficient

- ✓ The SGLI/GIRO trends have a feature of phase angle dependence.
- ✓ For the construction of the simple study model, the conditions for evaluation are limited to the following:
 - > The roll offset angle is 0° or 1°
 - ➤ The phase angle range is 5.0° to 11.0°
- ✓ Using the simple model shown below, the sensor responsivity degradation and phase angle dependence were separated by multiple regression analysis.

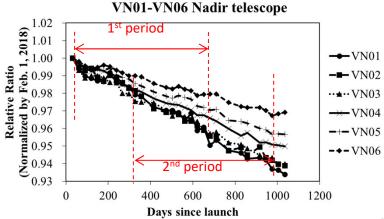
$$f_{ch,n} = a_{ch} \times g_n + b_{ch} \times d_n + c_{ch}$$

f: the SGLI/GIRO trend

g: the phase angle

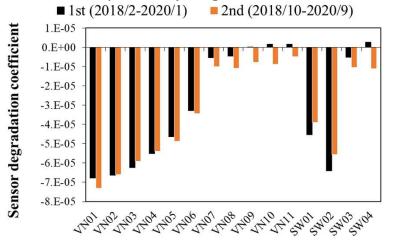
d: the days since launch

n: the number of the lunar calibration

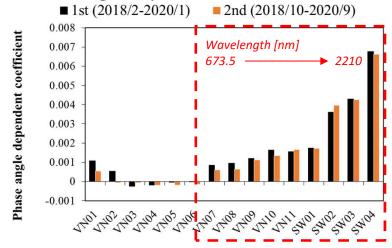

 a_{ch} : the phase angle dependent coefficient

 b_{ch} : the sensor degradation coefficient

 c_{ch} : the constant


Evaluation period

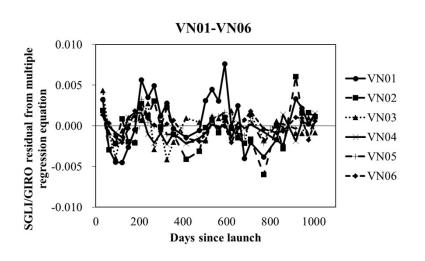
- ✓ Confirmation that these characteristics do not depend on the evaluation period.
 - I. 2018/2-2020/1
 - II. 2018/10-2020/9

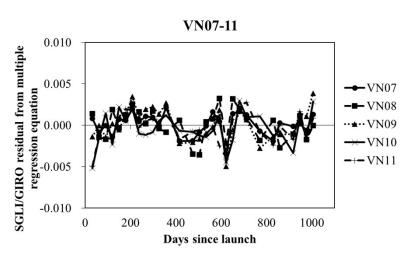


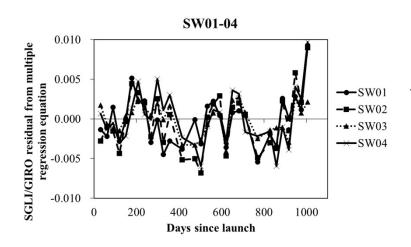
Derivation of Calibration Coefficient

Sensor responsivity degradation

Phase angle dependence




- ✓ The phase angle dependence at wavelengths longer than VN07(673.5 nm) is statistically significant.
- ✓ The dependency increases as the wavelength increases. In particular, the dependence is strong in the SWIR bands.

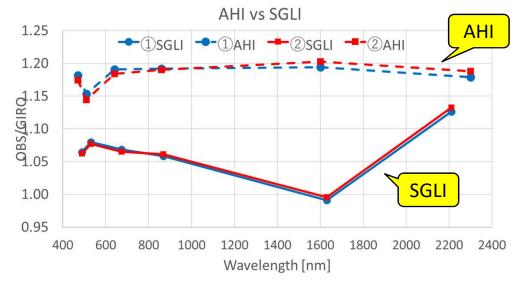

		1st evaluation period					2nd evaluation period						
Band	R2	2 RMSE	Sensor degradation dependence [1/day]		_	Phase angle dependence [1/degree]		RMSE	Sensor degradation dependence [1/day]		Phase angle dependence [1/degree]		
			slope	p-value	slope	p-value			slope	p-value	slope	p-value	
VN01	0.954	0.0031	-6.78E-05	2.54E-12	1.08E-03	7.67E-02	0.962	0.0028	-7.30E-05	4.33E-13	5.46E-04	2.93E-01	
VN02	0.982	0.0018	-6.64E-05	3.19E-16	5.28E-04	1.32E-01	0.962	0.0025	-6.59E-05	3.98E-13	-7.39E-05	8.72E-01	
VN03	0.975	0.0020	-6.24E-05	3.31E-15	-2.54E-04	4.89E-01	0.985	0.0014	-5.91E-05	2.23E-16	−7.49E−05	7.69E-01	
VN04	0.989	0.0011	-5.51E-05	2.23E-18	-1.82E-04	3.96E-01	0.991	0.0010	-5.38E-05	2.86E-18	-1.83E-04	3.06E-01	
VN05	0.973	0.0016	-4.63E-05	7.48E-15	-4.65E-05	8.70E-01	0.982	0.0013	-4.86E-05	9.43E-16	-1.81E-04	4.35E-01	
VN06	0.970	0.0012	-3.29E-05	2.29E-14	-1.83E-05	9.32E-01	0.971	0.0011	-3.42E-05	4.31E-14	-1.54E-04	4.60E-01	
VN07	0.591	0.0016	-5.32E-06	2.05E-02	8.58E-04	8.84E-03	0.656	0.0015	-9.96E-06	7.96E-05	6.06E-04	4.24E-02	
VN08	0.625	0.0015	-4.61E-06	3.04E-02	9.55E-04	2.64E-03	0.509	0.0022	-1.07E-05	1.13E-03	6.48E-04	1.18E-01	
VN09	0.459	0.0017	1.67E-07	9.42E-01	1.20E-03	1.39E-03	0.548	0.0020	-7.76E-06	5.54E-03	1.12E-03	5.58E-03	
VN10	0.538	0.0021	1.60E-06	5.34E-01	1.63E-03	2.18E-04	0.615	0.0020	-8.84E-06	2.65E-03	1.34E-03	1.85E-03	
VN11	0.550	0.0020	1.70E-06	4.81E-01	1.56E-03	1.65E-04	0.601	0.0020	-4.85E-06	6.32E-02	1.65E-03	2.48E-04	
SW01	0.944	0.0025	-4.54E-05	7.26E-11	1.75E-03	1.55E-03	0.925	0.0024	-3.89E-05	1.05E-10	1.73E-03	6.68E-04	
SW02	0.961	0.0031	-6.40E-05	1.12E-11	3.62E-03	8.90E-06	0.935	0.0034	-5.55E-05	1.13E-10	3.97E-03	4.08E-06	
SW03	0.917	0.0019	-5.24E-06	6.18E-02	4.30E-03	7.53E-10	0.883	0.0023	-1.05E-05	1.24E-03	4.25E-03	6.89E-09	
SW04	0.913	0.0027	2.80E-06	4.67E-01	6.76E-03	1.68E-10	0.884	0.0034	-1.10E-05	1.35E-02	6.61E-03	3.01E-09	

Derivation of Calibration Coefficient

■ SGLI/GIRO residual from multiple regression equation

- The residuals of the regression equation tend to annual variation.
 - This may suggest the effect of libration.

Validation using AHI



- ☐ Inter-comparison of SGLI and Himawari8-AHI using GIRO
 - ✓ Inter-comparison of AHI/GIRO and SGLI/GIRO of almost the same observation conditions (obs. time and geometry)
 - ✓ The following differences are corrected by GIRO
 - Geometric conditions (phase angle, libration, sun-moon / moon-satellite distance)
 - Spectral response function of AHI and SGLI

ı	AHI	B01	B02	B03	B04	B05	B06
•	Wavelength [nm]	470	510	640	860	1600	2300
	SGLI	VN04	VN05	VN08	VN11	SW03	SW04
	Wavelength [nm]	490				1630	
	Ratio SGLI to AHI of lunar irradiance*	1.011	0.983	1.025	1.014	1.037	0.927

- ✓ Comparison of SGLI/GIRO and AHI/GIRO
 - 2 cases with almost the same phase angle

	Case date		phase_angle	selenographic latitude of satellite	selenographic longitude of satellite	selenographic latitude of sun	selenographic longitude of sun	dist_sat_moon	dist_sun_moon
1	SGLI	2019/2/20 3:16	8.255	-4.796	1.928	-0.914	-5.368	351544	0.991
1	AHI	2019/2/20 3:40	8.262	-3.579	2.260	-0.914	-5.567	398634	0.991
2	SGLI	2019/4/20 0:27	9.342	-6.602	5.118	-1.525	-2.746	364414	1.007
	AHI	2019/4/20 3:00	9.792	-7.067	4.061	-1.524	-4.038	412584	1.007

	B01	B02	B03	B04	B05	B06
AHI/SGLI	11%	7%	11%	12%	21%	<i>5%</i>

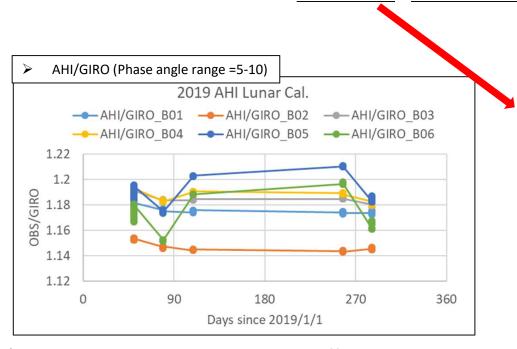
- AHI results are about 5-20% larger than SGLI.
 - These results may be include calculation errors of the solid angle and oversampling factor etc.

Validation using AHI

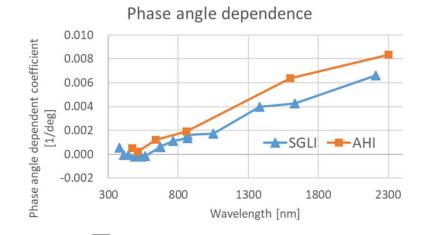
B06

2300

■ Validation of phase angle dependence correction using AHI/GIRO trend

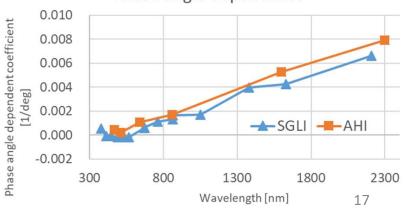

	AHI	B01	B02	B03	B04	B05	
✓ AHI/GIRO trend (2019)	WL [nm]	470	510	640	860	1600	
2019 AHI Lunar Cal.							
• AHI/GIRO B01 • AHI/GIRO B02 • AHI/GIRO B03	Phase a	angle i	range	=5-10°	0		
• AHI/GIRO_B04 • AHI/GIRO_B05 • AHI/GIRO_B06		201	.9 AHI Lui	nar Cal.			
1.4				IRO_B02		_	
SGII observation range	.22 AH	I/GIRO_B04	4 • AHI/G	IRO_B05	• AHI/GIRO)_B06	
13	1.2					en e	ı
			-Augusta			9	
OBS/GRO 1.1	16					and the same of th	I
1.1	And the Contract of the Contra		_		-		
	.14						l
-90 -60 -30 0 30 60 90 •	.12 5	6	7	8	9	1	0
Phase angle [deg]			Phase a	ngle [deg]			
№ B01	B06	6					
B01			B06				
	19/2 • 20	19/3	2019/4	• 2019	9/9 • 20	019/10	
1.21 2019/2 data have bias in B01-B04.							
1.2 Earth shine?						-	
1.19							
1.18							
1.17 1.16 1.16							
1.15							
5 6 7 8 9 10 5	6	7	7	8	9	10	0
Phase angle [deg]			ase angle			16	
B04-06 trends have p	hase an	igle de	epende	ence		Τ()

Validation using AHI



- Validation of phase angle dependence correction using AHI/GIRO trend
 - ✓ Apply himawari-8/AHI data to SGLI simple model

f(band, g, day) = a(band) * g + b(band) * day + c(band)



- ➤ The phase angle dependence coefficient increases with increasing wavelength, and AHI and SGLI have similar tendencies.
 - It suggests that the dependencies are the characteristic of GIRO.
 - In the case of phase angles 5 and 10, without this dependence correction, it becomes the error factors of about 3% {=0.006 x (10-5) @ SW04} in the SWIR.

Correction of AHI/SGLI ratio

Conclusion

Conclusion

- ✓ GCOM-C/SGLI continuously observes the moon since the launch , we evaluate the lunar calibration trend using GIRO.
 - These trends show similar trends to other onboard calibrations, suggest that the lunar calibration evaluation acquires the degradation characteristics of the sensor in detail.
 - Similar to the heritage instruments, the OBS / GIRO trend shows phase angle dependence, especially at SWIR band.
- ✓ A simple model was constructed to extract the sensor responsivity degradation from OBS/GIRO trend.
 - As a result, it was confirmed that the phase angle dependence increases as the wavelength increases.
 - These phase angle dependences were verified using AHI/GIRO trend.
 - These results suggest that phase angle dependence corrections are useful for lunar calibration evaluation using GIRO of other sensors observing at the phase angle range of 5-10 degrees.

☐ Future plan

✓ These results will be periodically reflected as the radiometric calibration coefficients for the ground processing system.