TRACEABILITY OF LUNAR DIRECT IRRADIANCE MEASURED WITH A PRECISION FILTER RADIOMETER

Natalia Kouremeti¹, Saulius Nevas², Tom Stone³ Julian Gröbner¹, Stelios Kazadzis¹, Philipp Schneider² and Kerstin Schwind²

¹Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, PMOD/WRC

²Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany

³U.S. Geological Survey, Flagstaff, AZ 86001, USA

19ENV04 MAPP Metrology for aerosol optical properties

graubYnden Education and Research

GAW-PFR network - AOD measurements

World aerosol Optical depth Research and Calibration Center (WORCC – PMOD/WRC)

- Maintain the WMO AOD Reference
- Monitor Aerosol Optical Depth (AOD) within the framework of Global Atmospheric Watch (GAW) of WMO in background stations

WrC

Motivation for nighttime AOD measurements

Arctic Haze - Ny-Ålesund

Top of Atmosphere Spectrum from surface direct solar/lunar irradiance measurements?

The Beer-Lambert Law $I(\lambda) = I_0(\lambda)e^{-\tau_\lambda m}$

 $\log I(\lambda) = \log I_0(\lambda) - \tau_\lambda m$

The optical depth constant during half-day (aerosols and trace gases)

The Langley-plot

The retrieved $I_0(I)$ represent the solar spectrum at the top of the atmosphere and can be compared to space-based measurements from satellites (in certain spectral bands).

Top of Atmosphere solar spectra using Langley

Comparison Campaign against the WMO AOD reference - FRC-V(Davos, 2021)

Aerosol Optical Depth from SI-traceable direct solar spectral irradiance measurements

Precision Filter Radiometers description

- Filter radiometer with 4 channels in a grid
 Interference filters :
 Lunar version: 412 nm , 500 nm, 675 nm, 862 nm FWHM: ~5 nm
- **Optimized for Direct Irradiance Measurements**
- Reference Plane: the precision aperture
- Temperature stabilized photodiodes
- Purged with nitrogen
- FOV: 1.2° plateau, 0.7° slope angle, homogeneity in plateau > 99.5%
- The PFR signal (V) is provided by a 22-bit data acquisition system (SACRAM) specifically designed for the PFR.
- SACRAM Linearity checked against a reference source calibrated at Metas

TUnable Lasers In Photometry (TULIP) setup

- ps-OPO system
- Fully automated system (230 nm to 2030 nm)
- Wavelength scale: Laser Spectrum analyser (LSA)
- Homogenized beam
- Reference detector: 3-element trap detector and equipped with a calibrated aperture, giving an uncertainty better than 0.1 %

Characterization Measurements

- Reference plane
- Spectral responsivity (*s*)
- PFR Gain

Lunar-PFR Characterisation

- spectral power responsivity of the trap detector: current measurements, aperture area, temporal stability and the homogeneity of the laser irradiance field
- Field of view of the PFR and of the trap detector,
- laser wavelength,
- positioning of the detectors,
- electronic noise of the PFR

Combined uncertainty based on Montecarlo model

Lunar-PFR Characterisation

Spectral responsivity uncertainty < 0.3% TULIP - 2021			10 ⁰ 10 ⁻² 10 ⁻⁴	And	M	CW=861.75 nm,FWHM=5.21 nm CW=501.39 nm,FWHM=4.65 nm CW=411.95 nm,FWHM=4.43 nm CW=675.39 nm,FWHM=5.15 nm
λ (nm)	<i>s</i> (µV.W⁻¹m²)	<i>U</i> s (%,k=2)	10 ⁻¹⁰			
861.75	12.96	0.26	300	400 300 00	wavelength /(nm)	300 1000 1100
501.39	9.78	0.25		Gain uncertainty 0.	3%	
411.95	10.88	0.27			TULIP	
675.39	6.80	0.18		Gain	2021 <i>U</i> =0.3%	
				Laboratory: 0	1.0 934.6	

2

Lunar: 3

4451.4

25164.0

Pipakalisch-Technische Bundesmatalt Branschwig und Berlin pmood wrrc

- Non linear response of the PFR to pulsed laser radiation
- The interference filters highly depend on the measuring geometry.

Relative responsivity of 412 nm channel retrieved from measurements at TULIP and ATLAS setups. highest discrepancies

Spectral responsivity uncertainty reduced from 1.5% to 0.3%							
Т	ULIP - 202	21	Differences to TULIP ATLAS-2020				
λ (nm)	<i>s</i> (W/m²)	U (%,k=2)	<i>δ</i> λ (nm)	<i>δs</i> (%)			
861.75	12.96	0.26	0.2	-1.4			
501.39	9.78	0.25	1.1	0.8			
411.95	10.88	0.27	0.8	5.1			
675.39	6.80	0.18	0.1	-2.5			

Izaña observatory (28.3° N, 16.5° E, 2.4 km)

- RIMO (Barreto et al. , 2018) available online spectral resolution 1 nm
- ROLO provided by Tom Stone

Accounting for the Relative spectral responsivity of Lunar PFR

- i. ROLO TSIS-1 adjustment
- ii. ROLO* (August 2023, under development)

WrC

Component	Description	Туре	Value	$\left ln\left(\frac{I_{PFR}(\lambda,t)}{I_{V}}\right)+\tau_{ray}m+\tau_{0_{3}}m_{0_{3}}\right)\right $
I_{λ}				Lunar Irradiance (π, c)/
Signal Noise Atmospheric	Standard deviation of the 10 sequential measurements	A		
Dark Noise	Standard deviation of the day	A		
τ _{ray} - Pressure	Uncertainty of pressure measurement	В	3mbar	
$ au_{03}$ Total column of ozone	Daily value of ozone measurement (OMI)	В	2%	
$ au_{03}$ Ozone airmass	Height of ozone layer	В	3km	
Airmass				
Equation	Comparison of ROLO and Lunar tracking algorithms	В	<0	
Time	Measurement integration time 1s, all channels	В	0	$-0.08 \begin{bmatrix} -0.08 \\ 0 \end{bmatrix} = 1 \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 3 \end{bmatrix} = 4 \end{bmatrix} = 5$

pmod wrc

Mean Deviation from ToA lunar irradiance 🦉 U (k=2)

OUTLOOK

- Lunar PFR was characterized at PTB and provides lunar irradiance with an expanded relative uncertainty U< 0.5%
- The newest ROLO version gives excellent agreement within 0.5 % for the 862 nm and 2-4% for the rest. The deviations increase with decreasing spectral irradiance levels.
- The lunar irradiance phase variation from ROLO/RIMO is predicted with an uncertainty of less 1% (k=2) for a lunar phase variation ± 50°.

FUTURE WORK

- RE-calibrate PFR and perform co-located measurements with MLO-LUSI
- Development of PFR with additional wavelengths (450 nm, 778 nm, 1024 nm)
- Verification of results through QASUME spectral measurements (U=2.5%)

19ENV04 MAPP Metrology for aerosol optical properties

pmod wra

GSICS/IVOS Lunar Calibration Workshop, Darmstadt 4-8 December 2023

raub'nden Education and Research.

pmod wrc

Successful Langley Example:

PFR-L Characterisation - Comparison of Calibration Methods

Irradiance Standard vs Monochromatic Irradiance

An irradiance calibration was performed at PTB after the TULIP calibration using 200 W lamps. The 2 calibration methods gave equivalent results, well within their uncertainties.

channel	862 nm	500 nm	412 nm	675 nm
1000 mm	-0.30%	-0.40%	-0.90%	0.30%
1500 mm	-0.10%	0.20%	0.30%	0.20%

PFR-L Characterisation - Stability 2015-2021

Direct Irradiance Calibration Setup

- Reference irradiance source (1000W FELtype lamp) calibrated at PTB.
- Motorized XYZ linear translators
- Motorized Rotation stages for azimuth and zenith angles.

Comparison of lamp calibrations performed since 2015 to TULIP calibration.

The gray lines: uncertainty of the lamp calibration.

	Difference LunarPFR-RIMO TOA Lunar Irradiance (%)				Combined calibration and regression uncertainty (%, k=2)				
	862 nm	500 nm	412 nm	675 nm	862 nm	500 nm	412 nm	675 nm	Lunar Phase
	7.47	9.47	7.80	10.27	0.33	0.35	0.50	0.29	-47
dua ley /als	7.09	9.16	7.69	10.03	0.33	0.35	0.51	0.28	-33
divid ang rriev	6.46	9.79	7.92	9.91	0.33	0.33	0.37	0.27	-19
Ind Let	6.64	9.97	7.79	10.25	0.33	0.32	0.35	0.27	-6
	6.16	9.22	8.00	10.07	0.35	0.34	0.37	0.29	58
Mean TOA difference (%)	6.76	9.52	7.84	10.10	0.40	0.40	0.47	0.36	
standard deviation (%)	0.52	0.36	0.12	0.15					
Combined expanded uncertainty of TOA Lunar irradiance of PFR (k=2, %)	1.60	1.41	1.27	1.25					

