Introduction to discussion of the LSICS specification. The past

Mar. 2 Framework concept presented by Tom and Hugh at the GSICS Annual meeting [several iterations with Tom and 11 members of the LSICS development group of the Vis/NIR subgroup]
Nov 2, Draft Spec distributed by Dave via the GSICS distribution email list.
Nov 9, Brief discussion at the Vis/NIR subgroup web meeting.
Everyone encouraged to review the Spec, especially the tables, send comments to Hugh Revised version was distributed by Seb before this meeting.

What was left out?

Concentrate on the file Tables; essential for design and coding.

Terminology for the difference levels of Lunar irradiance, chart 4

1

This week

- Todays *Host* moderates the discussion
- The goal is to reach agreement on as much as possible today
- Any (hopefully few) unresolved issues will defined and enumerated
- These open items will each have a leader assigned. Comments can be communicate to the item leader during this week.
- Open items: Describe on one page:
 - Who concerned: Where in Spec: (Section, paragraph, line, etc)
 - Concern and suggested change: Leader for resolution:
- Some of my SLIM perspective remains, based on dealing with dozens of instruments simultaneously.

3 month Process starting next week

- The *Host* submits each unresolved items as an action item within VIS/NIR data working group (or something less formal but at least as effective).
- Leader responsible for getting the item closed early enough to enable the next step .
- The Spec will be revised by the *Host* (or Hugh) incorporating all the above results and released (distributed) by the 2024 GSICS annual meeting.
- LSICS codeing begins !

Terminology for different versions of irradiance

- 1) Image: The irradiance derived from an image, using the steradians per pixel for nominal science imaging.
- 2) **Observed :** Image irradiance corrected for all 'observer' effects. Any oversample factor has been applied. *This is what Teams submit to LSICS*
- 3) **Reported :** Observed irradiance corrected to the GSICS consensus standard conditions, which would include adjustments for DistanceFactor and SolarVariation . Computed within LSICS
- 4) **Model** : Model-computed irradiance for GSICS consensus standard conditions. e.g., at standard distances and the reference Solar spectral irradiance. Computed within LSICS
- 5) **Predicted :** Model irradiance adjusted to the observations conditions.
 - I.e., Model * (distance factor * solar variation)

The **calibration ratio** is 2/5 == observed/predicted [or 3/4 == Reported/Model] Everyone must have the same interpretation of this term.

Two wavelength concepts, and two interface styles

- Two distinct ways to handle wavelengths:
 - Models based on a set of bands: GIRO, LIME: Spec. Fig. 2
 - Follows the March Framework Chart 8 here has tiny rewording
 - Models with continuous wavelength: SLIM: Spec. Fig. 3
 - Uses Standard Wavelength Set (SWS) and effective wavelengths
 - All spectral manipulation done once per SRF set. *Chart 9 here has tiny rewording*
- Two styles of interface to the Disk Reflectance Module:
 - Sequential; Spec. Fig. 2 and chart 8 here
 - Shell; Spec. Fig. 3 and chart 9 here

BACKUP slides

Framework, March 2

2023 March Framework Flow chart

Standard Wavelength Set

"Shell" Framework Flow chart

9

