

GOSAT-2 Lunar Calibration for FTS-2 and CAI-2

<u>Aki Sato</u>^a, Taichiro Hashiguchi^a, Makiko Hashimoto^b, and Kei Shiomi^b ^aRemote Sensing Technology Center of Japan (RESTEC) ^bJapan Aerospace Exploration Agency (JAXA)

4th Joint GCICS/IVOS Lunar Calibration Workshop @ Darmstadt, Germany: 4-8 Dec. 2023

Contents

1. Introduction

➢ GOSAT-2/FTS-2/CAI-2 overview

2. FTS-2 evaluation of radiometric degradation

- Flowchart of FTS-2 radiometric degradation evaluation
- Results of FTS-2 radiometric degradation
- Phase angle correction
- Result comparison between the calibration methods
- 3. CAI-2 evaluation of radiometric degradation
 - CAI-2 radiometric degradation evaluation
 - Result comparison between the calibration methods
- 4. CAI-2 evaluation of pixel-to-pixel sensitivity difference
 - Method of evaluation
 - Corrected CAI-2 L1B image
- 5. Summary & Future plan
- 6. Discussion point

1.Introduction

GOSAT-2 Overview

https://www.gosat-2.nies.go.jp/jp/about/observation/

- > The GOSAT-2 was launched on October 29, 2018, operating over 5 years.
- > The GOSAT is also operating since 2009 over 14 years.
- > The GOSAT-2 carries Thermal and Near Infrared Sensor for Carbon Observation-2 (TANSO-2) sensors :
 - FTS-2 (Fourier Transform Spectrometer-2)
 - CAI-2 (Cloud Aerosol Imager-2)

FTS-2 Overview

TANSO-FTS-2 (Fourier Transform Spectrometer)

	Band1	Band2	Band3	Band4	Band5		
		SWIR	TIR				
Target Gases	02	CO_2 , CH_4 , H_2O	CO ₂ , CO, H ₂ O	СН ₄ , Н ₂ О	CO _{2,} O ₃		
Spectral Coverage (µm)	0.75 - 0.77 1.56 - 1.69		1.92 - 2.38	5.5 - 8.4	8.4 - 14.3		
Spectral Coverage (cm ⁻¹)	12,950 - 13,250	5,900 - 6,400	4,200 - 5,200	1,188 - 1,800	700 - 1,188		
Spectral Resolution (nm)	~0.01 @0.76μm	~0.05 @1.6µm	~0.1 @2.0μm	~1 @7μm	~2.5 @11μm		
Detector	Si		MCT	T			
Exposure	4 sec						
Footprint size (nadir)	15.8 mrad						
Polarimetry	Yes	(P and S channels	5)	No			

- FTS-2 is the Fourie Transform Spectrometer that has high spectral resolution about 0.01[nm] at 0.76 [μm].
- > FTS-2 performs discrete observations that integrate each sounding for 4[sec], shown as upper right figure.
- FTS-2 has a multiplex advantage that enables observing all wavelength(0.75~14.3µm) and two linear orthogonal polarization (P and S) channels at the same time.
- > Although FTS-2 has TIR bands, lunar calibration only observes SWIR band1~3.

CAI-2 Overview

TANSO-CAI-2 (Cloud and Aerosol Imager)

	Band1	Band2	Band3	Band4	Band5	Band6	Band7	Band8	Band9	Band10
		AT+20[deg](Forward)					AT-20[deg](Backward)			
	UV VIS SWIR			SWIR	UV	UV VIS			SWIR	
Central Wavelength (µm)	0.339	0.441	0.672	0.865	1.63	0.377	0.546	0.672	0.865	1.63
Bandwidth(µm)	0.013	0.012	0.013	0.011	0.073	0.012	0.013	0.013	0.011	0.073
Spatial Resolution(m)	0.46				0.92		0.	46		0.92
Swath		920(km) / 1.29(rad) / 74(deg)								

- > CAI-2 is the Imager, has 10 bands(UV~SWIR) shown as upper table.
- > It has an advantage of UV bands (340 and 380 nm) for aerosol retrieval.
- CAI-2 observes both Forward and Backward (5 bands each) at the same time shown as upper right figure.
- > The spatial resolution of Band05 and Band10 are twice that of the other bands.
- CAI-2 has about 2000 pixels linear Si-CCD array (※Band5/10 are 1000 pixels linear InGaAs array).

CAI-2 image around Darmstadt (Nov. 08, 2023)

FTS-2/CAI-2 Calibration System Overview

FTS-2 Calibration System

FTS-2

- ➢ FTS-2 has calibration system shown as left figure.
- Radiometric calibration strategy :

	Calibration	Frequency		
Relative	Lunar calibration	every month		
	Solar Irradiance Calibration	every path (※suspended since Jan.2021 due to shutter trouble)		
Absolute	Vicarious Calibration evaluated at the Railroad Valley, USA	every year		

CAI-2

CAI-2 doesn't have on-board calibration instruments.

Radiometric calibration strategy :

	Calibration	Frequency
Relative	Lunar calibration	every month
Absolute	Vicarious Calibration evaluated at the Railroad Valley, USA	every year
	Vicarious Calibration using other satellite data(ex. VIIRS)	every month

2. FTS-2 evaluation of radiometric degradation

FTS-2 Lunar Calibration Operation

GOSAT-2 Lunar Calibrations are operated in two days around full moon(**phase angle around ±7-8 [deg]**).

■ day1 : Waxing gibbous moon

- Keep looking at the moon, integrate for 4 [sec] per sounding and observes 10-30 soundings.
- Used for the evaluation of radiometric degradation.
- FTS-2 modulation efficiency depends on orbital ambient temperature, so, we only used the timing² data.

The advantage of FTS-2 lunar calibration data

- High-frequency observation (almost every month)
- Long-term dataset (over 5 years)
- phase angle around ±7-8[deg], less lunar polarization (Coyne and Pellicori, 1969, Toledano et al., 2023(preprint))

Flowchart of FTS-2 Lunar Calibration Evaluation

• Moon size is smaller than FTS-2 footprint, so observed radiance are diluted and underestimated.

• We corrected this effect using correction coefficient that ratio of solid angle.

Evaluation wave numbers

- Spectral resolution of FTS-2 is quite higher than ROLO Reflectance Spectrum.
- Left images show the difference of spectral resolution.
 - Red line : ROLO Radiance Spectrum
 - converted Reflectance into Radiance
 - spectral resolution remains ROLO spectral reflectance
 - don't convolute FTS-2 SRF
 - Blue line : FTS-2 Radiance Spectrum
- So, we used some wavenumbers (16~20 points) and averaged for evaluation of radiometric degradation.
 - Green dashed line : evaluation wave numbers, avoiding the Fraunhofer lines
- We can provide FTS-2 high spectral resolution lunar calibration data.

Results of FTS-2 radiometric degradation

- Right images are FTS-2/GIRO ratio time series trend normalized by 1st lunar calibration(B1:Dec2018, B2,3:Mar2019).
- Solid line is Radiometric Degradation Factor(RDF) that currently applied FTS-2 Level 1B.
- Lunar calibration enables to evaluate relative radiometric trend with high precision. We found that the current RDF especially band1P was overcorrected about 4.2% in Sep2023.
- We will apply to this result to the next Level 1B version up.
 (Xaround on Jun.2019, FTS-2 instrument temperature changed, so radiance also changed and RDF has step.)

Degradation of FTS-2 as of Sep. 2023

Band	Band1P	Band1S	Band2P	Band2S	Band3P	Band3S
1 - FTS2/GIRO [%]	43.1%	38.4%	0.1%	-0.3%	2.2%	1.4%

where, Band1P/S compared to Dec2018, Band2P/S and Band3P/S compared to Mar2019

12

FTS-2 phase angle correction

GIRO reflectance around 7-8[deg] phase angle has 1-2 % uncertainty in SWIR region, which is shown by both GOSAT-2 and GCOM-C.

- > The latest years data are plotted during stable response and less degradation.
- It shows no time dependency but phase angle dependency.
- > We corrected this effect by estimating phase angle characteristic functions from the GOSAT-2 data.

Result comparison between the calibration methods

Compared with other results of radiometric calibrations.

- Vicarious calibration results evaluated at the Railroad Valley, USA every year
- ② Solar Irradiance Calibration (on-board) results that evaluated every path. (※ Unfortunately, it had suspended since Jan.2021 due to shutter trouble)
- ③ Lunar Calibration results that evaluated every month.
- Degradation trends are all consistent. (※Absolute values of ②, ③ adjusted to ①.)

■ The absolute radiance difference [%]

We use lunar calibration data only for degradation evaluation, but as a reference, estimated the absolute radiance difference between GIRO and FTS-2 data corrected by ①Vical.

(Ex. Band1P: GIRO is 20.7% lower than corrected FTS-2 data)

	P polarization	S polarization
band01(0.7 μ m)	-20.7%	-23.0%
band $02(1.6 \mu{ m m})$	-3.7%	-6.2%
band $03(2.0\mum)$	-6.2%	-7.5%

3. CAI-2 evaluation of radiometric degradation

CAI-2 Lunar Calibration Operation

GOSAT-2 Lunar Calibration are operated in two days around full moon(**phase angle around \pm7-8 [deg]**) ■ day1 : Waxing gibbous moon ■ CAI-2 Lunar Calibration CAI-2 CT scan Along Track(AT) Scan in day2 path Moon Sweep in the AT direction 4 times Moon Detector Used for the evaluation of radiometric degradation. Earth Cross Track(CT) Scan in day1 path • Sweep in the CT direction only once. • Used for the evaluation of pixel-to-pixel sensitivity ■ day2 : Waning gibbous moon difference. CAI-2 AT scan Moon **A** The advantage of CAI-2 lunar calibration data High-frequency observation (almost every month) Earth Detector Long-term dataset (over 5 years) ~12 pixels

Moon

CAI-2 Radiometric Degradation Evaluation

Method of radiometric degradation evaluation

- \succ Compared GIRO integrated irradiance I_k^{GIRO} and CAI-2 integrated irradiance I_k^{CAI-2}
- Since the moon is observed with oversampling in the AT direction, we corrected this effect by estimating the oversampling factor f_{OS} .

(ex. 1 sweep : pitch rate ~0.08[deg/sec], pitch rate stdev ~8.01E-5)

Relative OBS/GIRO= $\left(\frac{I_k^{CAI-2}}{f_{os}}\right) / I_k^{GIRO}$

Time Series Trend of Lunar Calibration

- Lower left images show the results of evaluation of radiometric degradation.
- It is relatively radiometric degradation from 1st lunar calibration(Dec.2018).
- Wavelength are the shorter, the degradation are the larger, both Forward and Backward.

Result comparison between the calibration methods

Comparison with other results (two examples)

- Compared between other radiometric calibration results.
 - ① Vicarious calibration results that evaluated at the Railroad Valley, USA
 - Vicarious calibration results using other satellite data(ex. VIIRS)
 - ③ Degradation curve estimated from Lunar Calibration results
 - As the left images show, all of degradation trends are consistent. (Xabsolute value of 3) adjusted to 1,2.)

■ The absolute value difference[%]

We use lunar calibration data only for degradation evaluation, but as a reference, estimated the absolute radiance difference between GIRO and corrected CAI-2 data by ① and ②.

(Ex. Band1: GIRO is 13.1% lower than CAI-2 data corrected by ① and ②)

B01	B02	B03	B04	B05	B06	B07	B08	B09	B10
0.339μm	0.441μm	0.672 <i>μ</i> m	0.865 <i>μ</i> m	1.63 <i>μ</i> m	0.377μm	0.546 <i>μ</i> m	0.672 <i>μ</i> m	0.865 <i>μ</i> m	1.63μm
-13.1%	-5.2%	-9.3%	-9.7%	+6.3%	-8.6%	-5.2%	-14.0%	-10.1%	+6.2%

4. CAI-2 evaluation of pixel-to-pixel sensitivity difference

Method of evaluation

CAI-2 some bands have sensitivity difference between even and odd pixels, so we evaluated that pixel-topixel sensitivity difference using the Lunar Calibration CT Scan data.

Corrected CAI-2 Level 1B image

Estimated pixel-to-pixel sensitivity difference(Band3)

- > We confirmed the reproducibility of this sensitivity difference using three times lunar calibrations all over the pixels.
- The Radiance Conversion Factor(RCF) was corrected by using the estimated difference.
- We applied corrected RCF to make CAI-2 Level 1B, the stripe image between even and odd pixels could be decreased shown as the lower figure.
- > We were able to evaluate the pixel-to-pixel sensitivity difference using only lunar calibration CT scan data in orbit.

before correction after correction

□ Stripe on the antarctica ice of CAI-2 Level1B image(Band3)

Summary & Future plan

Summary

- FTS-2 evaluation of radiometric degradation
 - FTS-2 has high spectral resolution and two linear orthogonal polarization P and S.
 - We use lunar calibration data for radiometric degradation. The evaluated relative radiometric trend was high precision, and it was consistent with the other method results.
 - FTS-2/GIRO ratio has dependency on the phase angle around 7[deg] in SWIR region, and this trend was also shown in the GCOM-C/SGLI result.

> CAI-2 evaluation of radiometric degradation

• We use lunar calibration data for radiometric degradation. The evaluated relative radiometric trend was high precision, and it was consistent with the other method results.

> CAI-2 evaluation of pixel-to-pixel sensitivity difference

• We were able to evaluate the pixel-to-pixel sensitivity difference using only lunar calibration CT scan data in orbit.

Future plan

> We will update radiometric parameter of FTS-2 and CAI-2 using the result of lunar calibration.

➤ The 3rd generation of the GOSAT series, GOSAT-GW/TANSO-3 will be launched in JFY2024.

Discussion point

Lunar Model

- We hope to SWIR phase angle dependency (around \pm 7-8deg) will correct more accurately and release more high spectral resolution model data. We look forward to LSICS.
- We can provide FTS-2 high spectral resolution lunar data.
- Lunar Model for absolute calculation
 - As a reference information, we estimated absolute radiance difference between GIRO and corrected FTS-2 and CAI-2 data. %GOSAT-2 absolute value evaluation result has about 7% uncertainty, so this is just reference information.

■ FTS-2

Solar Irradiance model

- GIRO : Wehrli
- corrected FTS-2 : TSIS-HSRS

	P polarization	S polarization
band01(0.7 μ m)	-20.7%	-23.0%
band02(1.6 <i>µ</i> m)	-3.7%	-6.2%
band $03(2.0\mu{ m m})$	-6.2%	-7.5%

■ CAI-2

Solar Irradiance model

- GIRO : Wehrli
- corrected CAI-2 : 2000 ASTM

B01	B02	B03	B04	B05	B06	B07	B08	B09	B10
0.339 <i>μ</i> m	0.441 <i>μ</i> m	0.672 <i>μ</i> m	0.865 <i>μ</i> m	1.63μm	0.377 <i>μ</i> m	0.546 <i>μ</i> m	0.672 <i>μ</i> m	0.865 <i>μ</i> m	1.63μm
-13.1%	-5.2%	-9.3%	-9.7%	+6.3%	-8.6%	-5.2%	-14.0%	-10.1%	+6.2%

We will provide GOSAT-2 Lunar Data

Please contact : <u>sato_aki@restec.jp</u>, <u>shiomi.kei@jaxa.jp</u>