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NOVELTIS Presentation outline

» Motivation

» Lunar infrared radiance model
» Simulations of IASI observations
» Model-observations comparison

» Conclusions
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NOVELTIS Motivation

» |ASlis an infrared sounder on MetOp (EPS) satellites

» Calibration of IAS| observations
* Absolute radiometric calibration < 0,5 K @280K

* Inter-comparisons between sounders < 0,2 K @280K, but nevertheless inter-comparisons between IASI instruments
using Earth View acquisitions are not perfect.

» Why consider the Moon as a calibration source?

* No atmosphere on the Moon
= Spectra are nearly flat = easier to calibrate the whole spectrum
= Radiometric time variability can be “perfectly” determined/calculated

* Already used as a calibration source in VIS and NIR, but not in TIR

» How might lunar observations be used and can the current IASI performances be reached?

e Absolute calibration
* |Inter-calibration (relative) between the instruments
* Analyses of radiometric calibration stability over time

— CNES study conducted by NOVELTIS to explore these questions
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NOVELTIS Motivation

» How does IASI see the Moon?

The Moon passes regularly, twice a month, through a calibration view @zenith - Cold Space View 2 (CS2)

* The Moon phase (illuminated surface %) during the transits is ~10% (6-17%) and ~90% (83-94% = 33-48° phase
angle)

CNES adapted the on-board coding tables for cold space (used to encode the on-board spectra) to the lunar
dynamics

* Moon observations were planned (CNES/EUMETSAT) and the Moon was successfully observed during 5 months
in 2019 and from January 2021 to January 2022

* Only ¥90% phase transits observed

» How can lunar observations be used for calibration?

* Necessity to develop a lunar infrared radiance model

* Simulation of IASI lunar observations

* position and size determination in the IASI FOV, IPSF convolution J

* Model-observations comparison ' w
e Estimation of the performance
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NOVELTIS Lunar infrared radiometric model

» Alunar infrared radiance model has been developed

* Calculation of thermal emissive (dominant) and solar reflective component (contribution up to 30% in SWIR)
Lemoon (1) = €(A) B(A Tyoon ) Lysun 1) = Zlon,lat (1 * Fsynin (4) - cosit) * Tyoon (lon, lat, 1))  6<90°

in a high spatial resolution of 0.5°
* Terrestrial reflective component is negligible (maximal contribution of 0.00104%)
* Coverage of the whole IASI spectral domain 645-2760 cm™ (3.6-15 pum)

» Key quantities/parameters to determine for the calculation of infrared Moon radiances
* Sun-Moon-satellite geometry (positions, distances, lunar phase and orientation)
e Surface temperature of the Moon surface
* Emissivity/reflectivity of the Moon surface

* Soil type distribution for the emissivity/reflectivity application
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» Sun-Moon-satellite geometry (positions, distances, lunar phase and orientation)

Lunar infrared radiometric model

e Calculated with the semi-analytic models VSOP87 (Sun) & ELP2000-82B (Moon) developed by Paris Observatory

* Good agreement with JPL ephemeris (DE440) — verified for 780 dates of IASI Moon transits

Sun positions
<2”

Difference between the internal ephemerides and JPL DE440 - Sun position
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Lunar infrared radiometric model

NOVELTIS

» Surface temperature derived from LRO/Diviner bolometric temperature L4 product
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Cumulative product (2009-2015) with a temporal resolution of 1h (15°)
and a high spatial resolution (0.5°)

a5

Contains the relief effects, but it is an averaged dataset

* No libration

a5

* No changes in solar irradiance (implemented in the model)

It is a bolometric temperature dataset, necessary conversion to surface
temperature

Determination of the coordinate system and calculation of the subsolar point to apply a T, map correctly
* Modified selenographic coordinated system with (0,0) always in the sub-observer point (satellite / Earth’s center)

We implemented also T models (influenced by LRO/Diviner data):

urf
* Semi-analytical from Vasavada et al. (2012)

* Empirical from Hurley et al. (2015)
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» Emissivity of the Moon surface

e Data from Apollo samples
* JHU data (Salisbury et al. (1997)) in ASTER/ECOSTRESS spectral library

* RELAB/BU data in CRISM spectral library (compiled for MRO/CRISM)

* Quite significant differences

* Studies suggest that samples should be measured in Moon-like conditions

e Lambertian approximation

Lunar infrared radiometric model

Reflectivity (%6)

* Distinction between typical highlands and maria (+impact craters)

* Apollo11 & 12 —maria
* Apollo 15, 16 & 17 — highlands

* To distinct soil types, different datasets were considered :
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«  Albedo (LRO/LOLA)

* Chemical composition (Clementina)
* Surface rugosity (LRO/LOLA)

* Slope (LRO/LOLA)

* Rock abundance (LRO/Diviner)

Empirical thresholds implemented with a gradual transition
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Reflectivity CRISM & ASTER

—— maria CRISM

—— highlands CRISM
maria ASTER

= highlands ASTER

10 15 20 25
Wavelength (Lm)

Lunar surface type distinction (highlands=0, marna=1)
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Lunar infrared radiometric model

NOVELTIS
Total component of the Moon Radiance @ 14um
[lluminated Moon surface 89.2%
= Radiance
|14

m?2 srm-1
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NOVELTIS Lunar infrared radiometric model

» First performance estimation of the model was done with various sensitivity tests

* Impact of various approximations and parameters on the calculated brightness temperature

Lunar integrated brigthness temperature
Surface temperature maps Absolute difference - Various impacts
* Observations vs. models/parametrisations —— RA thresholds: 4/5 - 2.5/8 (max difference)
. f— Libration in RA maps (max difference)
O |mpaCt Of tel’l’aln E. 2.5 1 — Libration in Tsurf (est. 7.5° in lon (max))
. . —— Tsurf maps: Diviner - Vasavada @ 9°W subsolar
* Impact of libration 9 . Ny
c —— Variable solar constant (1.5 Wm™2)
* Impact of variability of solar constant on surface 2 —— Variable solar constant (1.5 Wm; tsurf=Vasavada)
. . “d_’ 2.0 Emissivity database (ASTER - CRISM)
temperature (parametrization) =~
(]
Q —
Soil type maps 2
* Impact of threshold rock abundance values 5 151
5 . Q
* Impact of libration £
2
(1]
Solar component £ 10
* Impact of variability of solar constant on radiance =
=]
Emissivity s
. 0 -
* Difference between spectral bases 5
e P | A
° <] !
Important differences in emissivity < oo \%{ FAY
* Observations are more performant than parametrizations. , , , , , ,
4 6 8 10 12 14
* Neither of other impacts exceeds 0.2K. Wavelength [um]
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NOVELTIS Simulation of IASI observations

» Simulation of IASI observations
e Determine the position of the Moon in the field of view of IASI’s imager (11S)
e Colocate the position in IIS with IASI’'s FOV
e Convolve the modelled radiance with the IASI IPSF (4 pixels, 3 bands)

» Position in IS (imager) FOV in one image

e Calculate (theoretically) the Moon phase, size and orientation in the IIS FOV

* The best results are obtained when the barycenter-center vector is calculated (simulation) and then applied on
the observed barycenter.

* Precision of ~0.25 pixel lIS

» Position can be improved by considering
a series of images.
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& Simulation of IASI observations

NOVELTIS

» Improvement of the position by considering a series of images

* The trajectory of the satellite and movement of the instrument (yaw steering) are known = we can calculate

the angle and the angular velocity of the Moon transit in 1IS FOV.

* The minimization of the distances permitted us to improve the precision of the Moon in IIS to ~0.1 IIS pixel.

* Also permitted a better in-flight estimation of :
= FOVIIS
- IASI-B: 60.71 £ 0.12 mrad
~ IASI-C:61.22 £0.11 mrad

- This adds some uncertainties in the quality of
IASI/imager coregistration

= QOrientation of the IIS image
Yaw steering angle has a systematic bias of 0.1° + 0.02".
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Found moon centers in IS coordinates

FOV = 60.8976 mrad
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NOVELTIS Simulation of I1ASI observations

» Improvement of the position by considering a series of images

* The trajectory of the satellite and movement of the instrument (yaw steering) are known = we can calculate
the angle and the angular velocity of the Moon transit in 1IS FOV.

* The minimization of the distances permitted us to improve the precision of the Moon in IIS to ~0.1 IIS pixel.

* Also permitted a better in-flight estimation of :

Found moon centers in IS coordinates

= FOV IIS sm1908120851
_ IASI-B: 60.71 + 0.12 mrad e FOV = 60.8976 mrad /
- IASI-C: 61.22 £ 0.11 mrad 270 /
- This adds some uncertainties in the quality of 2.5
IASI/imager coregistration /
= QOrientation of the IIS image s /
Yaw steering angle has a systematic bias of 0.1° + 0.02". /
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NOVELTIS Simulations and Observations

» After the colocation applied, the modelled radiances are convolved with the IASI IPSF of the
concerned pixel to obtain a simulated IASI lunar observation.

* Operational IPSFs are normalized (OK for IASI observations but not for lunar
simulations) = had to be denormalized to take into account physical differences
between pixels (inter-band differences are emissivity spectral base dependent)

* Some uncertainties exist with IPSFs (exact size, quality of measurements)
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NOVELTIS IASI lunar observations

IASIB_21052231805_191619_5D441_SN12_PN1_Spectre

The Moon covers 35%-43% of the 1ASI FOV

Smooth inter-bands are present only during central transits

Spectrum Brightness Temperature {K)

For the partial transits there is a systematic complete loss of some bands S e
. © Wn (em—1) -

(coding table underflow) B ASI-C spectrum13051517 LA 2 SH 4 P12

All this makes partial transits unusable, and bordering transits s

should be used with caution. ~

500

There were detector (and coding table) saturations May-August 2021

LLLLL IASI radiance
aaaaaa

* Period when the moon irradiance was at maximum for the IASI transits

Noise reduction is performed with a reduction 8
of spectral resolution (0.25 cm™ -> 7.5cm™). 5
Simulations and observations can finally be compared.

oooooo
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Brigthness temperature difference [K]
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Results

» |In absolute values, the comparison shows a ~2.5K accuracy between the simulations and observations.

» Results between the bands are quite consistent, but there is a strong temporal variation

Absolute difference of Lunar I1ASI brightness temperature (Observed - Simulated)

I._.__Q‘

Band 1 MAE
Band 1 Mean error
Band 1 S.Dev.
Band 2 MAE

Band 2 Mean error
Band 2 S.Dev.
Band 3 MAE

Band 3 Mean error
Band 3 S.Dev.
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Absolute difference of Lunar I1ASI brightness temperature (Observed - Simulated)

Brigthness temperature difference [K]
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Brigthness temperature difference [K]
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Results

» The observed bias shows a strong dependency of lunar phase and is clearly model-related

Absolute difference of Lunar IASI brightness temperature (Observed - Simulated)

-2
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Band 1 Mean error
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Band 2 Mean error
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Band 3 Mean error
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relative illuminated surface

Moon iluminated surface at the observation time
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Brigthness temperature difference [K]
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Results

» The observed bias shows a strong dependency of lunar phase and is clearly model-related

Absolute difference of Lunar IASI brightness temperature (Observed - Simulated)

Band 1 MAE

Band 1 Mean error
Band 1 S.Dev.
Band 2 MAE

Band 2 Mean error
Band 2 S.Dev.
Band 3 MAE
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relative illuminated surface

Moon iluminated surface at the observation time
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NOVELTIS Results

» The observed bias shows a strong dependency of lunar phase and is clearly model-related
* Although the moon phase range is the IASI data is quite small (84-92%)
» After extensive tests, it seems that the cause of the bias is the Lambertian approximation
» It appears that the Moon infrared emissivity is strongly directional
* LRO/Diviner data suggests the same
* We currently explore this question further
* This effect impacts both the emissive and the reflective components

» Given the very high correlation of the bias to lunar phase, the hope is that a correction of this effect will
improve an absolute accuracy of the simulation to < 0.5 K

» Standard deviations of the differences between the bands suggest this

* Band B3 behavior is more different probably because of m

the solar reflective contribution (more uncertainties) IASI-B 0.14 K 0.42 K 0.36 K

1ASI-C 0.23 K 0.39K 0.32K
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Results

» Inrelative values, we performed inter-instrument comparisons between various pixel pairs (where we
obtained enough data points).

The results give an accuracy of 0.5 — 1 K.

This is worse than what the 2019 data suggested (only 2 data points
available gave an estimated accuracy of 0.2K)

And less good than Earth-view based massive relative comparisons (<0.2K)

It is presumed that colocation uncertainties are a strong contributor to these
uncertainties (?)

Relative comparison of pixel pairs observed during a same transit to estimate
this contribution (time difference of ~15 sec between observations)

* In that timescale the impact of the physical model is negligeable
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Results

» Relative comparison of pixel pairs observed during a same transit (time difference of 15 sec)

o ?ifferences of deltaTb (obs-sim) between the pixels observed during the same transit

o sDifferences of deltaTb (obs-sim) between the pixels ocbserved during the same transit

—e— Band 1 Mean error difference
—e— Band 2 Mean error difference

—e— Band 1 Mean error difference
—e— Band 2 Mean error difference
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» Colocation is more precise with IASI-B than (+0.2K impact) with IASI-C (+0.5K impact)

» Results confirmed with other imager-sounder co-registration tests that we performed

» Colocation uncertainties is the most important contributor to relative inter-instrument results (~0.5 K),
but not the only one
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NOVELTIS Conclusion and further plans

» We are investigating a potential to use the Moon as calibration source for IASI| observations in thermal
infrared.

» The lunar observations are obtained in 2019 & 2021 and an infrared radiance model is developed.

* Related uncertainties are identified and analyzed (simulations and observations).

» Results give an accuracy of ~2.5K in absolute and 0.5-1K in relative values.

* Absolute results are dominated by the model (directional emissivity), and relative results by the imager-sounder
colocation uncertainties

* Solving these two identified sources would approach the results to the Earth-view based performance
* Different approaches could be employed to address the directionality of lunar soil emissivity:

* LRO/DIVINER data from its off-nadir campaign (performed in the phase 3 since 2016 and mid to high latitudes might be
already decently covered)

* Inversion approach using IASI data (high spectral resolution, spatially integrated, moon phase dependent)

* Modelling or parametrisation approach (mature enough? various results suggest that the multiple scattering is
important)

* We can conclude that the modeling is (also) hard in the infrared domain!
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NOVELTIS Distribution of the IASI observations

» CNES and EUMETSAT recognize that IASI lunar data is quite unigue and that it might be very interesting
to the scientific community

» The wish to start distribute it in the coming weeks and the preparations are on-going

» If you are interested in exploring the IASI lunar dataset, you can approach me in order to make sure that
the distributed data will correspond to your needs/ideas
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Thank you for your attention
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