

Landsat 8 Operational Land Imager (OLI)

GSICS Lunar Calibration Workshop Lawrence Ong, Brian Markham and The Landsat Calibration and Validation Team December 2, 2014

Landsat-8

The latest in the Landsat series Launched 2/11/2013 Two Instruments (OLI and TIRS) 705km 16-day repeat (WRS-2) – 8 days out of phase with Landsat-7

http://landsat.gsfc.nasa.gov, http://landsat.usgs.gov Data available: <u>http://earthexplorer.usgs.gov</u> and <u>http://glovis.usgs.gov</u> See also:*Remote Sensing*, Special Issue on Landsat-8 Characterization and Calibration, 6, 2014 (partially published):<u>http://www.mdpi.com/journal/remotesensing/special_issues/landsat8#published</u>

OLI Overview

- Pushbroom VIS/SWIR sensor
- Four mirror telescope with front aperture stop
- FPA consisting of 14 sensor chip assemblies, passively cooled

Knight, E.J.; Kvaran, G. Landsat-8 Operational Land Imager Design, Characterization, and Performance. *Remote Sensing* **2014**, *6*(11), 10286-10305; doi:10.3390/rs61110286.

OLI Focal Plane

- 9 bands (6 VNIR (including pan); 3 SWIR)
- 14 Focal Plane Modules
- 6916 Active Detectors per MS band per detector select per FPM (x2 for Pan)
- 48412 Active VNIR detectors per select (2 selects)
- 20748 Active SWIR detectors per select (3 selects)
- 69160 Active Detectors in Detector Select "0";
- 159068 Active Detectors Total (plus blind band)

Band Name	Band (nm)	Bandwidth (nm)	GSD (m)	SNR at Ltyp (Req)
Coastal/ Aerosol	443	20	20 30	
Blue	482	65	30	368(130)
Green	562	75	30	304(100)
Red	655	50	30	227(90)
NIR	865	40	30	202(90)
SWIR 1	1610	100	30	266(100)
SWIR 2	2200	200	30	327(100)
PAN	590	180	15	146(80)
Cirrus	1375	30	30	161(50)

Summary of the operational land imager focal plane array for the Landsat Data Continuity Mission

<u>Kirk A. Lindahl ; William Burmester ; Kevin Malone ; Ronald J. Schrein ;</u> <u>Ronda Irwin ; Eric Donley ;</u> Sandra R. Collins

Proc. SPIE 8155, Infrared Sensors, Devices, and Applications; and Single Photon Imaging II, 81550Y (September 16, 2011); doi: 10.1117/12.896005

OLI Spectral Coverage

Landsat-8 Lunar Maneuver

- Lunar Cals are performed monthly between 5 and 9 deg lunar phase angle
- The spacecraft maneuvers from nominal earth acquisition to point at the moon.
- The moon is imaged by a spacecraft pitch motion.
- The pitch rate is constant and well controlled during the imaging interval.
- Roll and Yaw rates are negligible.
- Orientation of the scan is along the terminator such that the bright limbs are at the top and bottom of the image.This provides better estimates of the lunar y-size

- Landsat-8 OLI Lunar Calibrations -

Sample OLI Lunar Image

December 2, 2014

Lunar data processing steps

- Begin with radiometric corrected data sets, Level1R
 - Radiance units,
 - Dark current correction via shutter closed collects that occur before and after lunar collects,
 - The L1R images are oversampled by about a factor of ~8,
- Threshold image to create a lunar disk image mask.
 - Option to apply median filter to remove any impulse noise in the image.
- Integrate irradiance on the threshold image.
- Estimate apparent along track lunar disk extent (y-size).
- Extract spacecraft positions (J2000) at the lunar image times from the ancillary data files .
- Compare instrument irradiances with those derived from USGS lunar Irradiance model code (provided by USGS Flagstaff) at GSFC.

EO-1's 14 years of lunar calibrations have been useful for trending of instrument relative stability and on-orbit performance. Lessons learnt have been implemented for Landsat-8

Kieffer & Stone Astronomical Journal June 2005

December 2, 2014

GSICS Lunar Calibration Workshop at EUMETSAT, Darmstadt, Germany Dec 2014 - Landsat-8 OLI Lunar Calibrations -

9

Sample trending results - OLI

- Landsat-8 OLI Lunar Calibrations -

GIRO implementation

- Data set from March 2014.
- Sample netCDF files for the spectral response functions (SRFs) and integrated irradiance have been generated.
 - There are currently no provisions for Lunar *Ysize* in GIRO input section.
- Tested SRFs and sample data for compatibility of GIRO software (including version 4) with local linux server
 - Irradiances are available for the 30m multi-spectral bands
 - Imagettes (TBD)
- Comparison of model results from GIRO as well those derived from the USGS Lunar Irradiance model code at GSFC is continuing.

Preliminary comparisons

Differences in model irradiances for the OLI bands 1.05 Relative Differences in modeled Irradiances, Derived@GSFC/GIRO 1.03 1.01 0.99 0.97 Differences could be due to incorrect coordinate frame used for the GIRO calculation 0.95 0.4 1.4 1.9 2.4 0.9 Wavelength[nm]

Comparing GIRO and Hyperion reflectances

- Work in progess...
 - Relatively large differences, especially in the reflectance comparisons for visible bands under investigation

Summary

- Differences in absolute calibration between the model and instrument irradiances are about 6%.
- Differences in the modeled irradiances from GIRO and those derived at GSFC are being evaluated.
- However, lunar observations can be useful as a relative calibration tool to supplement other on-orbit calibration processes.
- Lunar images are also useful to explore image artifacts, eg. stray light.
- Currently also evaluating the use of geometrically corrected lunar images (spatially resampled) for trending of instrument calibration stability.
- Consider opportunities for further reference observations for model improvement, eg. extension of the EO-1 and other platforms which are near the end of their mission life as orbiting lunar observatories, implementing a lunar observatory on the International Space Station, Aeronet?

Backup – Instrument image artifacts

December 2, 2014

EO-1 straylight artifacts

ALI

Note: Backgound is highly stretched

Hyperion

December 2, 2014

Stray light is negligible in the OLI

Green

Cirrus

December 2, 2014

GSICS Lunar Calibration Workshop at EUMETSAT, Darmstadt, Germany Dec 2014 - Landsat-8 OLI Lunar Calibrations -

Example of stray light mitigation

Landsat-8

Landsat-8 TIRs

- Banding artifacts observed in certain Earth scenes expected to be uniform (e.g.- open water)
- Effect varies from scene-to-scene
- Effect varies within scene
 - Context view from EarthExplorer

Work performed by Matt Montanaro Landsat-8 Calibration/Validation Lunar Calibration Workshop at

Example scene with varying along-track banding (band11)

 Banding observed especially near the boundary between adjacent focal plane arrays

December 2, 2014

EUMETSAT, Darmstadt, Germany Dec 2014 - Landsat-8 OLI Lunar Calibrations -

Landsat-8 TIRs straylight mitigation – determination of source location

 Lunar position relative to boresight known from observatory pointing telemetry

≈USGS

- Signal on arrays expressed as a fraction of direct moon signal (when moon is directly imaged)
- Information from lunar obsevations used to refine optical models.

Work performed by Matt Montanaro GSICS Lunar Calibration Workshop abration/Validation

EUMETSAT, Darmstadt, Germany Dec 2014 - Landsat-8 OLI Lunar Calibrations -

TIRs Straylight mitigation

Original TIRS

TIRS Corrected with GOES

Landsat-8

Work performed by Matt Montanaro GSICS Lunar Calibration Workshop at EUMETSAT, Darmstadt, Germany Dec 2014 bration/Validation - Landsat-8 OLI Lunar Calibrations -

December 2, 2014 Path173 DOY2013279 19

EO-1

- EO-1 was launched on Nov 21, 2000
- Initially at a 705 km Sun Synchronous circular orbit inclined at 98.2°
- Was in formation with the AM constellation 1 minute behind Landsat7 and 15 minutes ahead of Terra
- Orbit lowering maneuvers conducted between late 2005 to early 2007; continued to do inclination burns to maintain MLT until Feb 2011.
- Currently at approximately 09:10 MLT with a mean altitude of about 670km.
- A technology validation mission for Landsat earth observations
- Designed for one year mission; now in its 14th year 2000 scenes goal; over 78000+ scenes in archive and available for to the general public.
- Special issue publications:Geoscience and Remote Sensing Special Issue, Vol 41, Number 6, June 2003; and IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS), Volume 6, Issue 2, Part 1, April 2013 See: <u>http://eo1.gsfc.nasa.gov</u> for additional references

EO-1 ALI

MS/PAN Flight Module

The Advanced Land Imager (ALI) is a multispectral pushbroom sensor system and served as the prototype for the *Operational Land Imager* (*OLI*) on Landsat 8.

Landsat/ALI spectral coverage

Landsat 7 ETM+		ALI			Landsat 8 OLI			
Band name	Center- wavelen [nm]	Band- width	Band name	Center- wavelen [nm]	Band- width	Band name	Center- wavelen [nm]	Band- width
Pan	710	380	Pan	585	210	Pan	590	180
			1р	443	20	Coastal Aerosol	443	20
1	485	70	1	483	65	Blue	483	65
2	560	80	2	565	80	Green	563	75
3	660	60	3	660	60	Red	655	50
4	835	130	4 4p	790 868	30 45	NIR	865	40
			5р	1250	100	-	-	-
5	1650	200		-	-	Cirrus	1375	30
			5	1650	200	SWIR 1	1610	100
7	2220	260	7	2215	270	SWIR 2	2200	200

GSICS Lunar Calibration Workshop at EUMETSAT, Darmstadt, Germany Dec 2014 - Landsat-8 OLI Lunar Calibrations -

Hyperion Instrument Overview

ample Size	~30
th	~7k
. at	

Hyperion is a grating-based imaging spectrometer that provides global spaceborne spectral measurements to address Earth science issues. Now a pathfinder for the Hyspiri Mission.

Solar calibration

Solar Aperture

baffle

Aperture Boresight

nstrument Nadir

Aperture cover

A three mirror astigmate telescope (f11) design, 12cm primary aperture.

Convex Grating spectrometers with CCD VNIR and HgCdTe SWIR detectors (60µm pixels)

Parameters	Hyperion		
Wavelength Range	400-2500nm		
Number of Calibrated Spectral Channels	196		
Spectral Resolution	10nm		
Data Quantization	12-bits		
Ground Sample Size	~30m		
Total Swath	~7km		

22 22

Measured Lunar Spectra

ALI Lunar Trends (Selected Bands)

- Except for the shortest wavelengths, the ALI trends from the lamps and lunar calibration are consistent, albeit larger scatter in the SWIR bands.
- Quasi-annual variations appear correlated to the solar and spacecraft selenographic coordinates. Initially presented at the Lunar calibration workshop at Calcon 2006

December 2, 2014

"Libration" Effects

Hyperion Trends

