

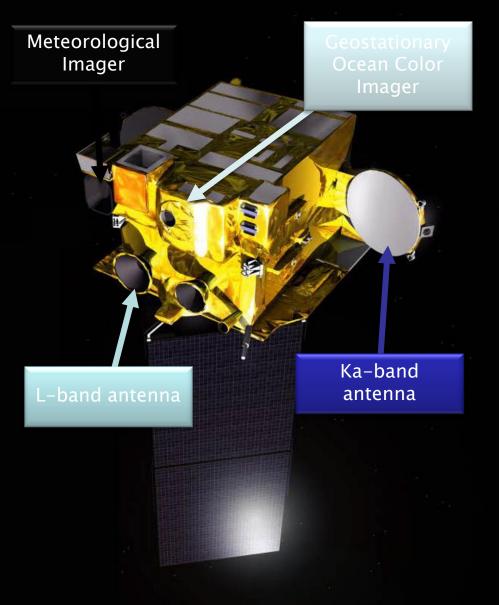
Introduction of GOCI and GOCI-II Mission with Lunar Calibration

Seongick CHO

Korea Ocean Satellite Center,
Korea Institute of Ocean Science and Technology

OVERVIEW

- Introduction : GOCI/COMS
 - Development and Application of GOCI
- Introduction : GOCI-II Mission
- In-Orbit Solar Calibration of GOCI
- GOCI-II Lunar Calibration
- Issues and Concerns



COMS (Chollian)

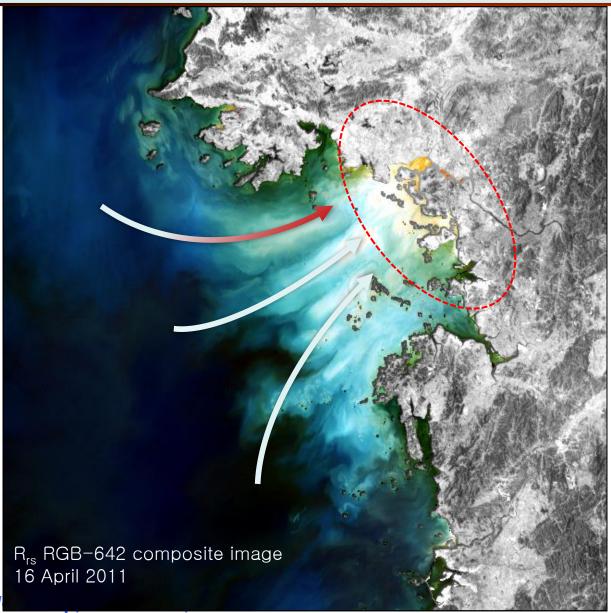
- COMS : Communication, Ocean & Meteorological Satellite
 - Developments of COMS(H/W) and GDPS(S/W): 2003
 - Establishment of KOSC (Ground System): 2005
 - The first Korean Geostationary multipurpose Satellite
 - Launch date: June 27 2010
 - Lifetime: 7 years
 - Payloads (3 Missions)
 - Geostationary Ocean Color Imager (GOCI)
 - Meteorological Imager
 - Ka-band Communication

GOCI: Overview

- Geostationary Ocean Color Imager
 - VIS/NIR Multispectral Imager for Ocean Monitoring
 - GSD: 500m@130 °E 36 °N, ~390m@nadir
 - Target Area: 2,500km * 2,500km
 - (Center: 130 ° E 36 ° N; Pohang-Si, Korea)
 - Temporal Resolution : 1hour (8 times at 1 day)

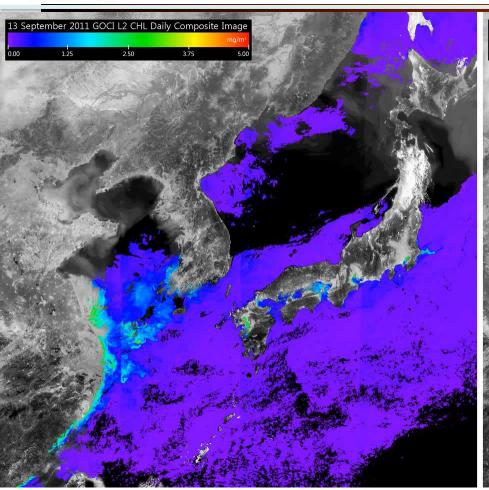
Spectral Bands Characteristics of GOCI

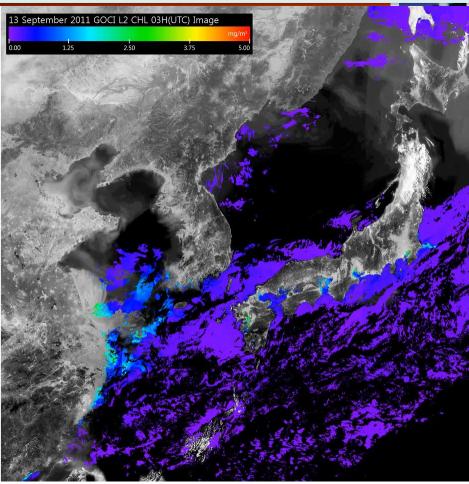
IRES (Not part of GOCI) Pointing Mrror	Band	Band Center	Band Width	SNR	Type	Primary Application		
Focal Plane Assembly With Thermal abunts Filter Wheel Support Support POM PiP Satelite Interface Mounts (4 bipods)	B1	412 nm	20 nm	1,000	Visible	Yellow substance and turbidity		
	B2	443 nm	20 nm	1,090	Visible	Chlorophyll absorption maximum		
	В3	490 nm	20 nm	1,170	Visible	Chlorophyll and other pigments		
P2 (+Y,+Z)	B4	555 nm	20 nm	1,070	Visible	Turbidity, suspended sediment		
45,00	B5	660 nm	20 nm	1,010	Visible	Baseline of fluorescence signal, Chlorophyll, suspended sediment		
35,00	В6	680 nm	10 nm	870	Visible	Atmospheric correction and fluorescence signal		
30,00 Size	B7	745 nm	20 nm	860	NIR	Atmospheric correction and baseline of fluorescence signal		
P3 (·Y,·Z) 20,000 115,00 120,00 125,00 130,00 135,00 140,00 145,00 150,00	B8	865 nm	40 nm	750	NIR	Aerosol optical thickness, vegetation, water vapor reference over the ocean		



GOCI: Tidal Movement

GOCI: Asian Dust

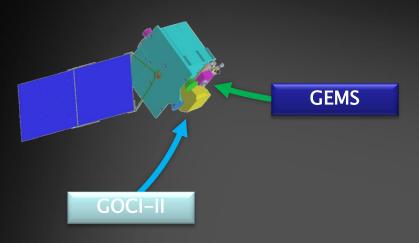




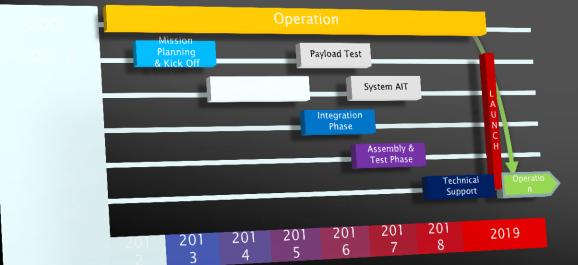
Effective Data Acquisition Ratio

DAILY COMPOSITE 8 SCENES / DAY

1 SCENE / DAY



GOCI-II / GK-2B



GeoKompsat-2A: AMI (ABI)

GeoKompsat-2B: GOCI-II & GEMS

- Ground Station & Data processing system
 Development (Ministry of Land, Transport and Maritime Affairs)
 - Performing precedent study (2012)
 - Project Period (2013 ~ 2018)
- Pre-processing system (Ministry of Education, Science and Technology)
 - Algorithm : KIOST and KARI
 - S/W Development : KIOST

- ◆ GOCI-II Development:
 - Sensor: Joint
 Development of KlOST–
 KARI–Airbus DS
 - GS(H/W & S/W): KIOST
 - Bus system KARI
- ◆ Supervisor : KIOST

GOCI-II Major User Requirements

Comparison to GOCI

	GOCI	GOCI-II		
Bands	8(VIS/NIR)	13(VIS/NIR)		
Ground Sampling Distance	500m (Local Area Mode)	250m (Local Area Mode) 1km (Full Disk Mode)		
Coverage	North-East Asian Sea around Korea	NE Asian Sea + Event Area Full Disk		
S/N	~1000	~ 1000		
Observation interval	An hour (8 times/day)	An hour (10 times/day)		

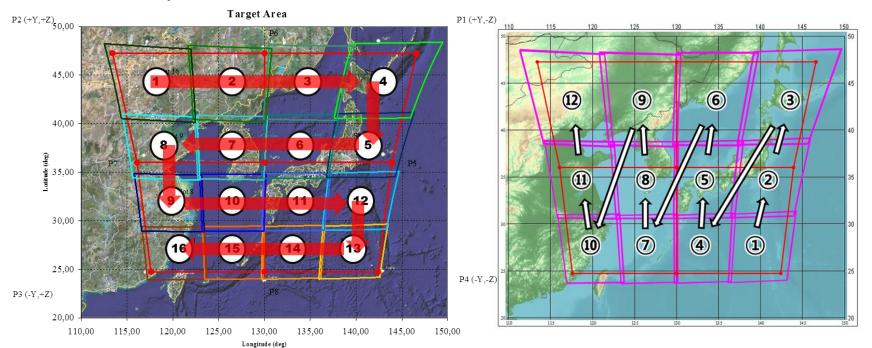
Rational for the User Requirements

Items	Specs	Rational		
Increased Number of Bands	13 bands	- PFT, HAB detection - Atmospheric correction improvement		
Improved spatial resolution	250m	- Monitoring of river estuaries and coastal environments		
More frequent daily observations	10 times/day	- Study of short-term ocean processes		
Pointable & Full Disk coverage	Local Area + Full Disk	Monitoring of events in the coverageStudy of large-scale phenomena (e.g. ENSC		

Spectral Bands and Performance

- Spectral Bands Requirements
 - 13 Bands (GOCI: 8 Bands)
 - ROLO model coefficients for 13 bands are required for lunar cal.

Radiance: W/m²/um/sr


GOCI Band	GOCI-II Band	Bandcenter	Bandwidt h	Nominal Radiance	Maximum Ocean radiance	Threshold Radiance	Maximum Cloud Radiance	NEdL	SNR @ Nominal radiance
_	1	380 nm	20 nm	93	139.5	143.1	634.4	0.093	998
1	2	412 nm	20 nm	100	150	152	601.6	0.095	1050
2	3	443 nm	20 nm	92.5	145.8	148	679.1	0.081	1145
3	4	490 nm	20 nm	72.2	115.5	116	682.1	0.059	1128
_	5	510 nm	20 nm	64.9	108.5	122	665.3	0.055	1180
4	6	555 nm	20 nm	55.3	85.2	87	649.7	0.049	1124
_	7	620 nm	20 nm	53.3	64.1	65.5	629.5	0.048	1102
5	8	660 nm	20 nm	32	58.3	61	589	0.03	1060
6	9	680 nm	10 nm	27.1	46.2	47	549.3	0.03	914
_	10	709 nm	10 nm	27.7	50.6	51.5	450	0.03	914
7	11	745 nm	20 nm	17.7	33	33	429.8	0.02	903
8	12	865 nm	40 nm	12	23.4	24	343.8	0.015	788
_	13	643.5 nm	483 nm	-	-	-	-	-	_

GOCI-II Imaging Sequence_LA

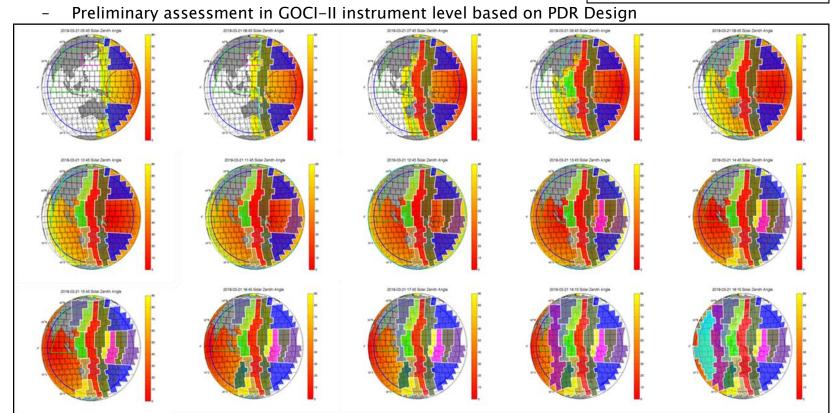
- Reference Local Area (RLA)
 - Baseline for slot imaging acquisition
 - Column-by-column Raster scan
 - · South to North within a column, East to West between column
 - For the reduction of ISRD (Inter Slot Radiance Discrepancy) in operation level

GOCI Local Area coverage by 16 slots

GOCI-II Reference Local Area coverage by 12 slots

GOCI-II Imaging Sequence_FD

10:15 ~ 10:45 11:15 ~ 11:45

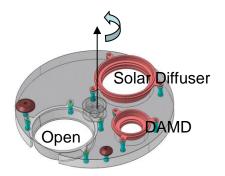

13:15 ~ 13:45 14:15 ~ 14:45

15:15 ~ 15:45 16:15 ~ 16:45 17:15 ~ 17:45

18:15 ~ 18:45 19:15 ~ 19:45

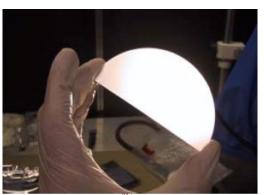
Full Disk (FD) (TBD)

- The Imaging time for FD < 240 minutes
- FD image acquisition: 1 image per day (5:15 19:45 Korean local tires)
- FD imaging criteria
 - Solar Zenith Angle < 80 degrees
 - Sunglint Reflectance < 0.01 sr-1



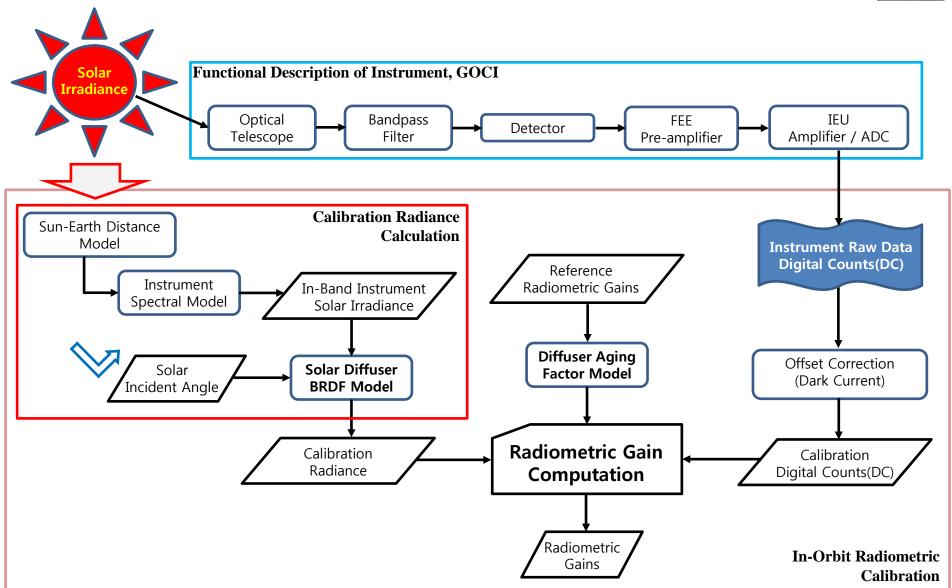
In-Orbit Solar Calibration

- Solar Calibration using solar diffuser is the baseline method for Radiometric Calibration of GOCI
 - Subsystem for Solar Calibration : Solar Diffuser & DAMD
 - DAMD(Diffuser Aging Monitoring Device) is the second diffuser in GOCI
 - Sun is a reference light source for GOCI in-orbit calibration
 - Characterization of Diffuser Transmittance with high accuracy is the key to achieve the radiometric accuracy
 - Because GOCI Solar Diffuser shows variation of transmittance with respect to the light incident angle, dedicated characterization model is implemented into calibration S/W developed by this research


Shutter wheel

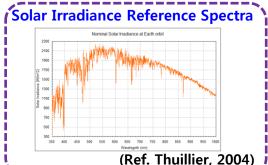
SD(Solar Diffuser)
Dim: 14cm

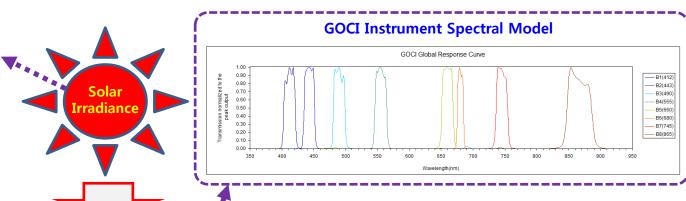
DAMD Dim: 7cm



Diffuser for irradiation test (other half one : reference)

Solar Calibration Processing





Calibration Radiance Calculation

Calibration Radiance

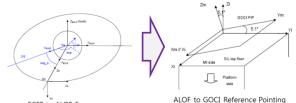
In-Band Instrument

Solar Irradiance

Calculation

Sun-Earth Distance Model

 $D_{es} = 1.00011 + 0.034221 \cos(\Phi_{day}) + 0.00128 \sin(\Phi_{day})$ $+0.000719\cos(2\Phi_{dov}) + 0.000077\sin(2\Phi_{dov})$


(Ref. Spencer, 1971)

Solar Incident Angle Calculation

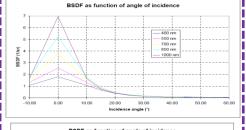
Orbital Position of Sun

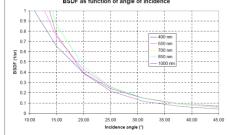
- VSOP82 Model (Ref. P. Bretagnon, 1982)

Frame Conversion

Solar Diffuser Solar Incident Angle **BRDF Model** Calibration Radiance

- **VSOP: Variations Séculaires des Orbites Planétaires**
- **ECEF: Earth Centered Earth Fixed Frame**
- ALOF: AOCS Local Orbital Frame

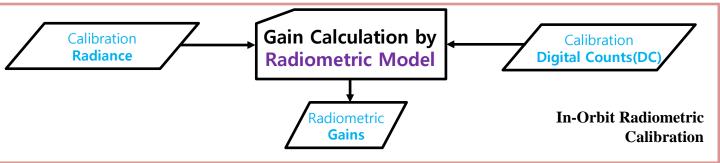

Sun-Earth Distance


Model

Instrument

Spectral Model

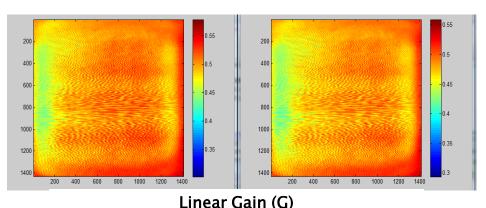
GOCI Diffuser BRDF Model

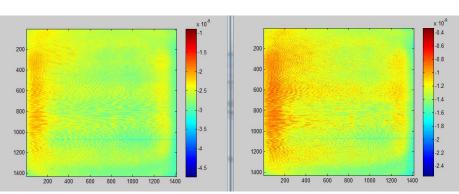


Lunar Calibration Workshop, EUME

Radiometric Model

- GOCI Radiometric Model: 3rd–Order Polynomial
 - Mathematical equation to express the relationship between DN(Digital Number), raw data measured from GOCI instrument and radiance


$$S = G \times T_{\text{int}} \times L + b \times T_{\text{int}}^{3} \times L^{3} + T_{\text{int}} \times O + F$$


L: Spectral Radiance(W/m²/um/sr)

G, b : Linear & Non-linear Gain

T_{int}: Integration Time

O, F: dark current parameters

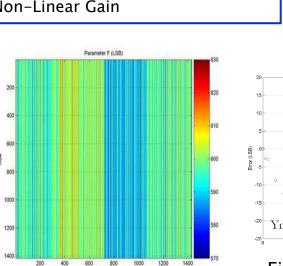
Non-linear Gain (b)

On-Ground Characterization

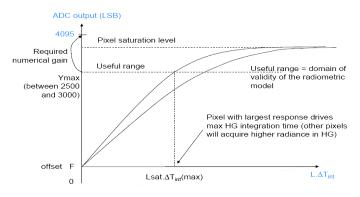
Radiometric Model Determination

- Two GOCI Radiometric Model Candidates
 - 2nd order model (Y=bX²+GX)
 - 3^{rd} order model (Y=bX³+GX)

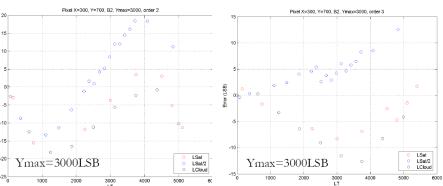
Y: GOCI Output signal after pseudo averaging and offset correction (LSB)


X : Input radiance*Integration Time

G: GOCI Overall Linear Gain


Signal for 10 pixels centered on the matrix

Dark Current(DN) Evaluation

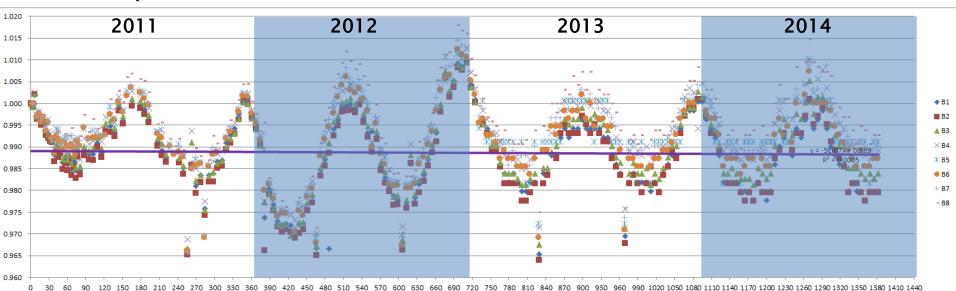

b: GOCI Overall Non-Linear Gain

Fixed Offset (F)

GOCI Radiometric Model Characterization

Fitting error (Order 2)

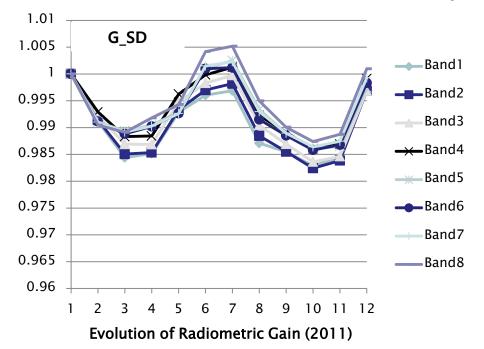
Fitting error (Order 3)

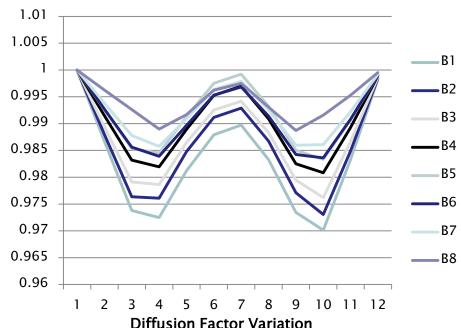


Discussion for Gain Evolution (3/3)

Evolution of Radiometric Gain (2011~2014)

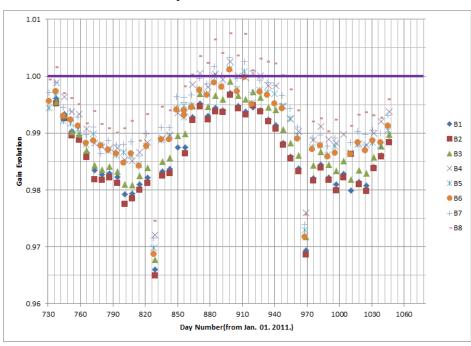
- Gain Variation is re-stabilized from 2013
- At same Solar incident(az/el) angle, assessed Gain evolution from 2011 to 2014 is ~0.45%. (0.7% for B1, 0.1% for B4)
- Annual gain variation is ~0.12% for mean value from 2M pixels.




Discussion for Gain Evolution (1/3)

Evolution of GOCI Radiometric Gain (2011.~2012.)

- Sinusoidal Variation of Radiometric Gain : ~ 2.5% (2011.)
- Gain Evolution with same solar Azimuth/Elevation angle
 - ~0.51% (G_SD, Weekly Obs.), ~0.14% (G_DAMD, Monthly Obs.)
 - Annual Solar angle variation: 108.4°/10.5° (AZ/EL)
- Gain Variation(Uniformity) over FPA: ~5% (CV; STDEV/Mean)



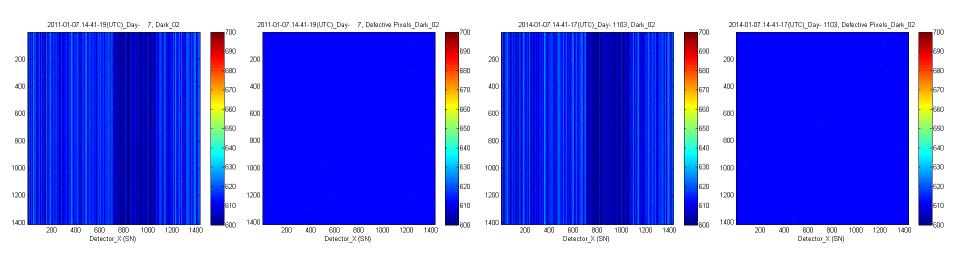
Systematic Behavior Correction

Solar incident angle effect(AZ) correction

- Due to the insufficient characterization of solar diffuser(variation of diffuser transmittance w.r.t. solar incident angle) in pre-launch test,
- Empirical correction method is in the development.

Evolution of Radiometric Gain Before incident angle correction (2013)

Evolution of Radiometric Gain After incident angle correction (2013)



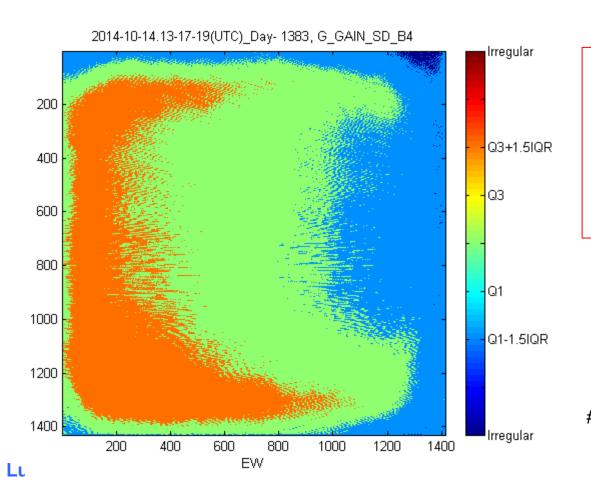
Evolution of Defective Pixel

Defective pixels determined from Dark Images

- Dedicated DARK position in Filter Wheel helps to acquire dark images in every slot imaging (32 times/acquisition).
- From 2011 to 2014, there is very small variation of dark current. (-0.04% after correction of seasonal variation)
- Defective pixels determined from dark images (same approach in pre-launch test) is increased about 24%.
 - # of Detective pixels : 215 pxl (2011), 266 pxl (2014)

Dark Image(L) & Defective Pixel Map (R) [2011]

Dark Image(L) & Defective Pixel Map (R) [2014]



Pixel-level assessment of GAIN

Evolution of Radiometric Gain for Each Pixel

 About 0.4% pixels on 2M(1413 x 1430) CMOS detector have irregular radiometric gain.

Q1: 1st quartile Q3: 3rd quartile

IQR: Interquartile range

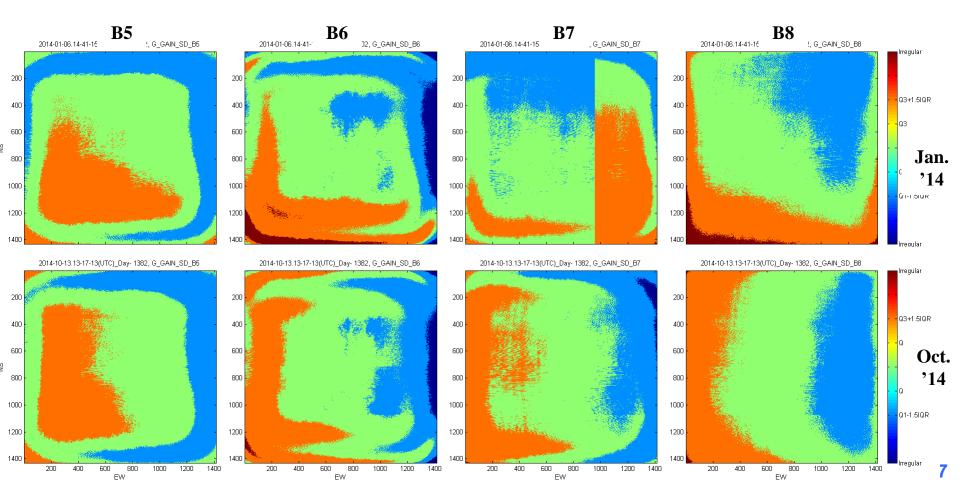
Definition of Irregular gain pixels

: pixel values are below Q1 -1.5IQR

: or above Q3 + 1.5IQR

(similar to Box-plot scheme in statistics)

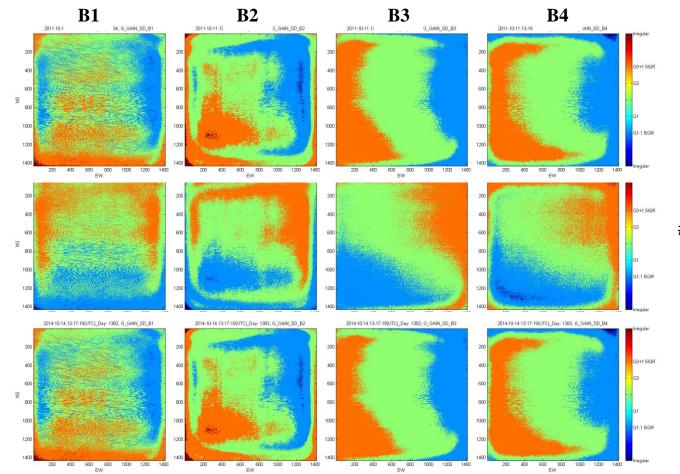
Radiometric Gain for BAND 4 # of Irregular gain pxls : 8,023 [2014.10.]



Pixel-level assessment of GAIN

Evolution of Radiometric Gain for Each Pixel

- Black & Red area corresponds to irregular gain pixels which has lower & higher gain value, respectively.



Pixel-level assessment of GAIN

Evolution of Radiometric Gain for Each Pixel

Annual variation due to solar incident angle derives annual gain variation

Radiometric Gain for BAND 4 # of Irregular gain pxls: 7,003 [Oct. 2011]

Radiometric Gain for BAND 4 # of Irregular gain pxls : 88,742 [Jan. 2014]

Radiometric Gain for BAND 4 # of Irregular gain pxls : 8,023 [Oct. 2014]

GOCI-II Lunar Calibration

In-Orbit Calibration Plan

Enhancement of Radiometric Performance

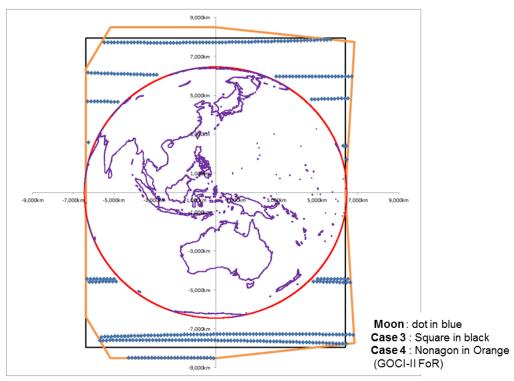
- Better uniformity of detector response (PRNU) is expected
 - On-going verification of in-house detector prototype performance test

Enhancement of Solar Calibration

- Full Characterization of diffuser w.r.t. incident angle variation is planned
 - This was not fully performed for GOCI even though highly requested by User
- Lambertian transmission is one of key criteria for the selection of diffusers
 - · Nearly perfect Lambertian diffuser is introduced for GOCI-II
 - Internal gas bubbles enable ideal light scattering for Lambertian property
 - Lambertian characteristics is recently verified by in-house sample test
- Same as GOCI, second diffuser for monitoring the aging of main diffuser is implemented for GOCI-II

Lunar Calibration : New implementation of calibration

- ROLO model: Reference Lunar Spectra Model for GOCI-II
- Required Research for Mission Operation Plan of Lunar Calibration
 - Observable Time Period for Lunar Calibration
- Operational Issues for GOCI-II Lunar Calibration
 - Moon(even in 100% phase) may not cover the whole GOCI-II IFOV
 - Limitation of Moon Image Acquisition due to the payloads operation policy



Lunar Calibration Plan

Lunar intrusion assessment within GOCI-II FoR (1/2)

4 cases of GOCI-II FoR (including actual GOCI-II FoR)

Monthly lunar intrusion in GOCI-II FOR (Jan. 2019)

-Case 1: ±8.7 degs in EW, ±8.7 degs in SN

-Case 2: ±8.7 degs in EW, ±9.8 degs in SN

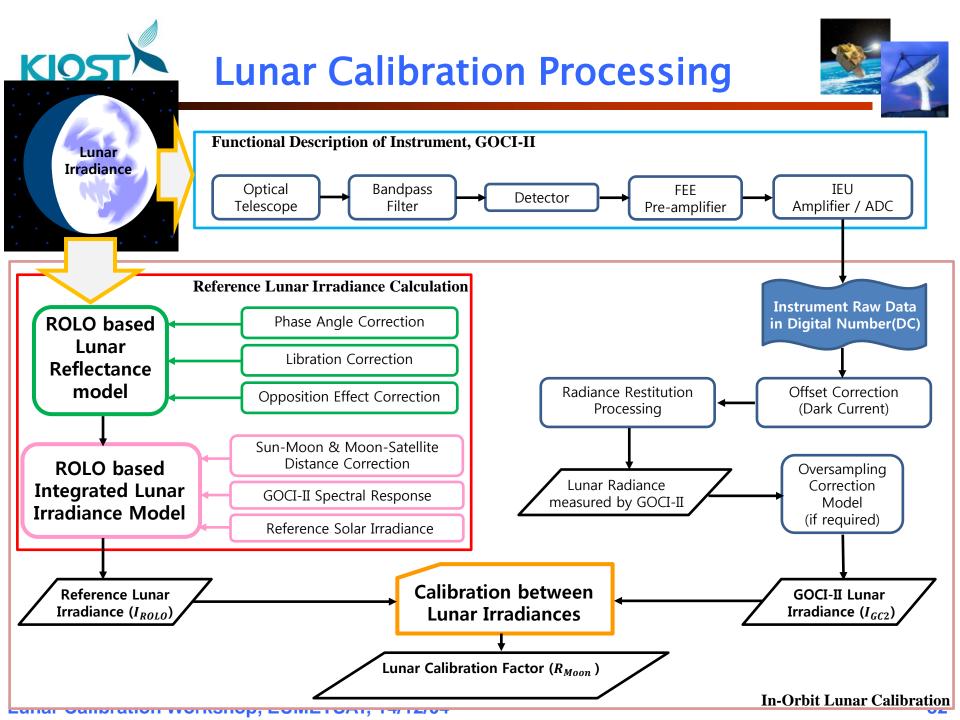
-Case 3: ±8.7 degs in EW, ±11.0 degs in SN

-Case 4: assigned GOCI-II FOR (Ref. GC2.TCN.00062.ASTR)

* Earth disk size corresponds to ±8.7 deg

	Case 4 GOCI-II FOR (# of Sequences)	Case 4 GOCI-II FOR (minutes)	Case 3 ±11.0 deg in S/N (minutes)	Case 2 ±9.8 deg in S/N (minutes)	Case 1 ±8.7 deg in S/N (minutes)
Jan.	15	362	334	107	107
Feb.	15	342	259	207	68
Mar.	15	244	184	184	109
Apr.	16	404	258	180	102
May	19	338	286	275	132
Jun.	14	362	299	134	65
Jul.	15	253	189	189	121
Aug.	16	392	308	131	131
Sep.	18	355	299	205	144
Oct.	14	303	228	150	87
Nov.	13	260	200	123	123
Dec.	14	391	352	221	81

Duration of lunar intrusion w.r.t. GOCI-II FOR (4 cases) in 2019


Result:

Assessed monthly lunar intrusion within GOCI-II FOR: about 334 mins/month (~5.5 hours/month)

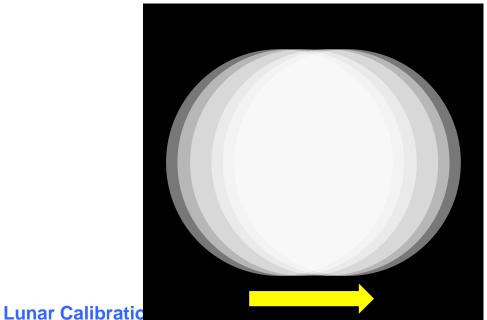
Satellite level moon observability of GOCI-II: about 53 mins/month

(Regarding operation timeline of the other payload, Moon phase larger than half moon)

No issue for the minimum revisit time requirement of Moon imaging (1 time/month in instrument level)

Dark Signal Determination

Dark Signal correction for GOCI & GOCI-II


- For Lunar Calibration, dedicated dark image acquisition at dark position in filter wheel is planned.
 - 2 dark images acquisition before(and after) Moon acquisition
 - Every dark image is generated after on-board averaging of multi frames.
- Dark signal is corrected by linear interpolation with 2 dark images w.r.t. actual integration time of each band.
 - Each spectral band of GOCI-II has different integration time w.r.t. its spectral response and required SNR performance.
- Q) For the Lunar Calibration, dedicated dark image acquisition is sufficient or dark signal determination over the dark area in the Moon image is additionally required?

Moon Image Acquisition (1/2)

- Moon Image Acquisition for GOCI-II (HG or LG)
 - HG(High Gain) & LG(Low Gain) image acquisition of GOCI-II
 - Fully separated & consecutive HG and LG image acquisitions are required to cover the wide dynamic range with high SNR.
 - Because GOCI-II has non-adjustable single electronic gain,
 HG and LG acquisition is defined by the integration time and
 # of accumulated image (1 for LG).
 - Integration time of HG is about 4.5sec per band.

Moon Image Acquisition (2/2)

- Moon Image Acquisition for GOCI-II (HG or LG)
 - Moon acquisition with HG gives
 - Relative motion of the Moon (~40 pixels) with different actual pixel integration time (issue of PRNU)
 - High SNR (~1,000)
 - Moon acquisition with LG gives
 - No or small relative motion of the Moon
 - Low SNR (~200)

Q) For the effective Lunar Calibration, which acquisition mode(HG or LG) is more suitable for GOCI-II?

Spectral Response Function

SRF for GOCI-II

- SRF variation(incl. band shift) over detector region
- Planned SRF w.r.t. sub-area of detector or each pixel
- Q) For the Lunar Calibration (GIRO), 1nm band shift within IFOV at 20nm bandwidth shall be taken into account?

Absolute SRF for Sensitivity analysis

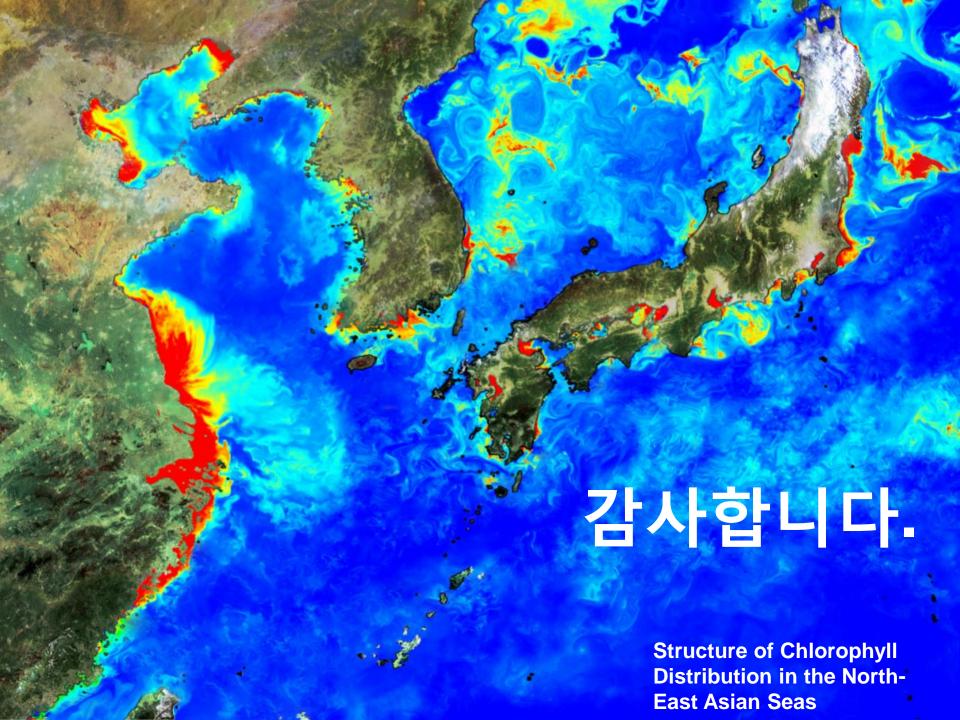
- Generally, lower spectral response of the sensor gives lower radiometric performance (ex. SNR due to dark current).
- For the effective sensitivity analysis, absolute SRF may be useful to assess actual radiometric performance of each band and each sensor.
 - · Normalized SRF can be easily calculated from absolute SRF.

Straylight/Ghost

Optical Design and Test Plan of GOCI-II

- Field Stop in the intermediate focal point is added to minimize straylight & optical ghost.
- Inclined between filter and detector to minimize diffusion straylight
- PSF over the Focal Plane will be characterized, and if necessary, straylight correction method will be applied for lunar calibration.

Concluding Remarks



Development of GOCI-II

- With on-going operation of GOCI derives GOCI-II principal user requirements such as lunar calibration.
- Heritage of lunar calibration results are very helpful to develop the sensor.

Lunar Calibration for GOCI–II

- According to the calibration heritage of GOCI, Lunar Calibration is essential for GOCI-II.
- GIRO application and related activities are very helpful for GOCI-II lunar calibration.
- Advices or comments for GOCI-II lunar calibration are highly appreciated.

