

MODIS and VIIRS Reflective Solar Bands Calibration, Performance, and Inter-comparison

Jack Xiong¹, Aisheng Wu¹, and Changyong Cao² 1. NASA/GSFC; 2. NOAA/STAR

Other Contributors: NASA MCST and VCST

GSICS Users' Workshop, College Park, April 8, 2013

Outline

- Background
- MODIS and VIIRS On-orbit Calibration
 - Solar and Lunar Calibration
- On-orbit Performance
 - Sensor Performance
 - Calibration Inter-comparison
- Summary

Background

Moderate Resolution Imaging Spectroradiometer (MODIS)

- Key instrument for NASA EOS Terra and Aqua missions
- 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB)
- RSB spectral wavelengths: 0.41 2.2 μ m; TEB: 3.75 14.5 μ m
- Spatial resolution: 250 m (2 bands), 500 m (5 bands), and 1 km (29 bands)
- Visible/Infrared Imager Radiometer Suite (VIIRS)
 - Key instrument for S-NPP and future JPSS missions
 - 14 reflective solar bands (RSB), 7 thermal emissive bands (TEB), and 1 day night band (DNB)
 - RSB spectral wavelengths: 0.41 -2.3 μm ; TEB: 3.75 12.2 μm
 - Spatial resolution: 375 m for I bands and DNB; 750 m for M bands

Aqua MODIS is currently used as the reflective solar calibration reference VIIRS, with strong MODIS heritage, should be considered as a future reference sensor

MODIS and VIIRS Spectral Bands

VIIRS Band Spectral Range (um)		Nadir HSR (m)	MODIS Band(s)	Range	HSR
DNB	0.500 - 0.900				
O M1	0.402 - 0.422	750	8	0.405 - 0.420	1000
O M2	0.436 - 0.454	750	9	0.438 - 0.448	1000
⊙ мз	0.470 0.400	750	2 10	0.459 - 0.479	500
	0.470 - 0.450	750	3 10	0.483 - 0.493	1000
○ м4	0.545 0.565	750	4 or 12	0.545 - 0.565	500
	0242-0202	UU	4 01 12	0.546 - 0.556	1000
11	0.600 - 0.680	375	1	0.620 - 0.670	250
O M5	0.662 0.682	750	13 or 14	0.662 - 0.672	1000
	0.002 - 0.002	130	15 01 14	0.673 - 0.683	1000
MG	0.739 - 0.754	750	15	0.743 - 0.753	1000
12	0.846 - 0.885	375	2	0.841 - 0.876	250
~	0.846 - 0.885	750	16 or 2	0.862 - 0.877	1000
○ M7			10 01 2	0.841 - 0.876	250
MB	1.230 - 1.250	750	5	SAME	500
M9	1.371 - 1.386	750	26	1.360 - 1.390	1000
B	1.580 - 1.640	375	6	1.628 - 1.652	500
M10	1.580 - 1.640	750	6	1.628 - 1.652	500
M11	2225 - 2275	750	7	2.105 - 2.155	500
14	3.550 - 3.930	375	20	3.660 - 3.840	1000
M12	3.660 - 3.840	750	20	SAME	1000
O M13	3.973 - 4.128	750		3.929 - 3.989	1000
			21 or 22	3.929 - 3.989	1000
M14	8.400 - 8.700	750	29	SAME	1000
M15	10.263 - 11.263	750	31	10.780 - 11.280	1000
15	10.500 - 12.400	375	31 or 32	10.780 - 11.280 11.770 - 12.270	1000 1000
M16	11.538 - 12.488	750	32	11.770 - 12.270	1000

• Dual gain band

Similar MODIS bands

MODIS and VIIRS On-orbit Calibration

- Same On-board Calibrators
 - Solar Diffuser
 - Solar Diffuser Stability Monitor (SDSM)
 - Space View (SV)

- Solar Calibration
 - MODIS: Regular SD/SDSM observations (SD door opens only during scheduled SD/SDSM calibration)
 - VIIRS: Continuous SD calibration (no SD door) in each orbit with SDSM currently scheduled on a daily basis
- Lunar Calibration same strategy
 - Regularly scheduled at nearly the same phase angle
 - Observed through SV port
 - SC roll maneuvers

MODIS Solar Calibration

EV Reflectance Factor: $\rho_{EV} \cdot \cos(\theta_{EV}) = m_1 \cdot dn_{EV}^* \cdot d_{Earth-Sun}^2$

dc: Digital count of SDSM

$$m_{1} = \frac{BRF_{SD} \cdot \cos(\theta_{SD})}{\langle dn_{SD}^{*} \rangle \cdot d_{Earth-Sun}^{2}}, \Gamma_{SD} \cdot \Delta_{SD}$$

$$m_{1} = \frac{BRF_{SD} \cdot \cos(\theta_{SD})}{\langle dn_{SD}^{*} \rangle \cdot d_{Earth-Sun}^{2}}, \Gamma_{SD} \cdot \Delta_{SD}$$

$$m_{1} = \frac{dc_{SD}}{dc_{Sun}} \cdot \frac{\int_{SD} \cdot \Delta_{SD}}{\int_{SD} \cdot d_{Earth-Sun}^{2}}, \Gamma_{SD} \cdot \Delta_{SD}$$

$$m_{1} = \frac{dc_{SD}}{dc_{Sun}} \cdot \frac{\int_{SD} \cdot \Delta_{SD}}{\int_{SD} \cdot d_{Earth-Sun}^{2}}, \Gamma_{SD} \cdot \Delta_{SD}$$

MODIS Lunar Calibration

VIIRS On-orbit Calibration

- Similar to MODIS
 - Linear algorithm for MODIS; Quadratic algorithm for VIIRS
 - More stringent limit for lunar calibration roll angles

On-orbit Performance

- Sensor Performance
 - Changes in RSB Response
 - SD Degradation
- Calibration Inter-comparison (preliminary results)
 - SNO
 - Libya-4 Desert

Aqua MODIS and S-NPP VIIRS

MODIS RSB On-orbit Performance

Large Changes in VIS (including mirror side dependence and AOI dependency) 10

VIIRS RSB On-orbit Performance

SD On-orbit Degradation

Aqua MODIS (~11 yr)

S-NPP VIIRS (~1.5 yr)

SD On-orbit Degradation Tracked by On-board SDSM

VIIRS has no SD door: Large degradation in SD BRF Potential impact on SD calibration

• Approaches

- SNO
- Libya-4 desert

Methodologies

- Common region of interest (ROI): 20 km by 10 km
- Cloud screening (spatial uniformity checking)
- Correction for sensor RSR difference (MODTRAN simulation)
- Correction for site-dependent BRDF effect (MODIS based BRDF)

BRDF $(\theta, \psi, \varphi) = K_0 + K_1 f_1(\theta, \psi, \varphi) + K_2 f_2(\theta, \psi, \varphi)$

References: Roujean J.L. et al. 1992, JGR; Wu et al., 1995, JGR; Schaaf, C.B., 2002, RSE

Sensor RSR and Solar Irradiance Model

VIIRS to MODIS radiance ratios determined using sensor RSR and Esun models for their spectrally matched bands

MODTRAN5 Simulations

VIIRS/MODIS Reflectance Ratio

Input options include a standard atmospheric profile (U.S. 1976), a standard aerosol model, a fixed viewing angle, a wide range of solar angle & atmospheric water content, and surfacetype dependent spectral reflectances.

Reflectance Trending (Aqua MODIS; Libya 4)

Long-term reflectance trending (MODIS C6) shows that the site is stable to within 1%

Good reference site to track the sensor onorbit calibration performance

Linear Regression

17

SNO

Libya-4

SNO

Libya-4

Libya-4 **SNO** M5, AOI=36(deq)Libya-4 **Before RSR correction** Before RSR correction M5VIIRS/MODIS Refl Ratio Refl(VIIRS)/Refl(MODIS) 1.10 1.10 1.05 1.05 1.00 .00 Rel. Chg 0.90±0.59(% 0.95 0.95 0 100 200 300 400 300 400 0 100 200 Days Since 1-Jan-2012 Days Since 1-Jan-2012 M5, AOI=36(deq)Libya-4 М5 After RSR correction After RSR correction **VIIRS/MODIS Refl Ratio** RefI(VIIRS)/RefI(MODIS) 1.10 1.10 .05 1.05 .00 1.00 Cha 0.90±0 Rel. 0.95 0.95 0 100 400 200 300 200 300 400 \cap 100 Days Since 1-Jan-2012 Days Since 1-Jan-2012

Correction based on MODTRAN5 simulations with averaged atmospheric conditions (std. atmo. profile, 1.0 gcm-2 atmo. water content for SNO, 5.0 gcm-2 for desert)

	MODIS and VIIRS Reflectance Ratios										
Band	M1	M2	M3	M4	M5	M6	M7	l1	12	MU	
SNO	0.991	0.987	0.995	1.018	1.069	1.003*	1.019	0.998	1.020	1.6%	
Libya-4	1.015	1.000	N/A	0.998	1.099	N/A	1.047	0.995	1.049	1.5%	
MODT	0.996	1.006	0.994	1.000	1.046	0.991	1.006	1.009	0.987	1.0%	
Diff	-0.5%	-1.9%	0.1%	1.8%	2.2%	1.2%	1.3%	-1.1%	3.3%	±2.0%	

Values are derived using observations after day 100 of 2012

MU – Measurement or model uncertainty (%); MU for M6 ratios is noticeably higher than 2% due to early saturation for the MODIS matching band

Diff – RSR corrected calibration difference (from SNO) between VIIRS SDR and MODIS L1B (C6)

Future Effort and Improvements

- Long-term trending with consistent time series (data products)
 - MODIS C6
 - VIIRS consistently calibrated (reprocessed) radiances and reflectances
- Sensor calibration improvements
 - Mirror degradation modeling
 - Consistency between SD and lunar calibration
 - Degradation impact analysis and mitigation strategy
 - $\circ~$ Use of modulated RSR
 - $\circ~$ SD degradation impact on sensor and SDSM calibration

Summary

- Both MODIS and VIIRS RSB are well calibrated (joint effort by a gov-led SDR team), meeting specified sensor design requirements
 - Same on-board calibrators (OBC)
 - Similar calibration methodologies
 - Similar SD degradation (larger at shorter wavelengths)
 - Different trend for sensor/detector response (due to different causes)
- On-orbit calibration differences between MODIS and VIIRS RSB are generally within 2% (except 3% for I3)
 - Future improvements with reprocessed SDR
- Effort for future improvements
 - VIIRS mirror degradation impact (modulated RSR)
 - Larger SD degradation impact (reflected solar spectra)
 - SDSM detector OOB response (not discussed here)