

GOES-19 MPS-HI Calibration: The Newest GOES Radiation Belt Instrument

March 17, 2025
GSICS Annual Meeting 2025

Presenter: Athanasios Boudouridis (University of Colorado CIRES)

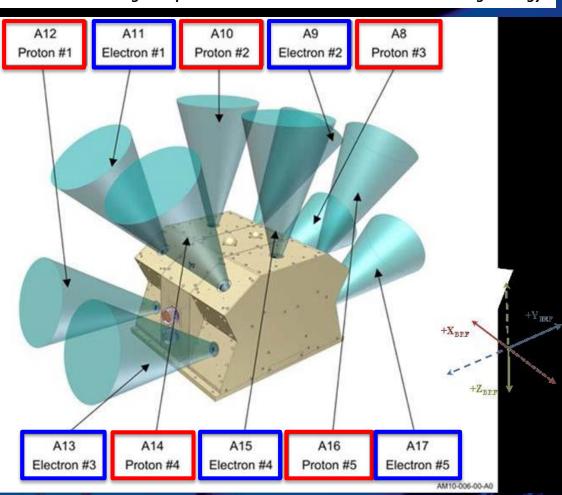
Contributors: Juan Rodriguez, Brian Kress, Kevin Hallock

(University of Colorado CIRES)

The CIRES team wish to thank NOAA/NCEI, the MPS-HI vendor Assurance Technology Corporation, the Space Weather Prediction Center, and the GOES-R Program

GOES-R Program

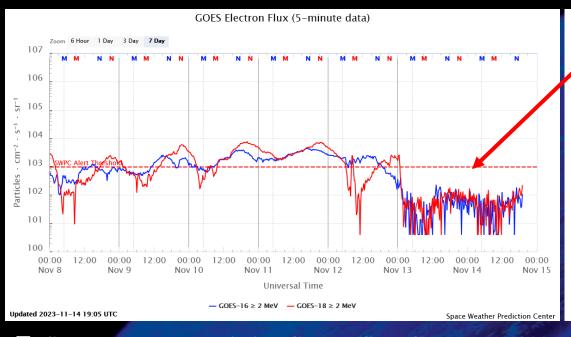
- Satellites launched to date:
 - GOES-16 (R): launched 19 November 2016
 - GOES-East (75.2°W) since 18 December 2017
 - GOES-17 (S): launched 01 March 2018
 - In storage (104.7°W) since 14 March 2023
 - Was GOES-West (137.2°W) from 12 February 2019 to 4 January 2023
 - **GOES-18** (T): launched 01 March 2022
 - GOES-West (137°W) since 4 January 2023
 - GOES-19 (U): launched 25 June 2024
 - Currently undergoing post-launch tests (89.5°W)
 - Will replace GOES-16 as GOES-East on April 4, 2025 (75.2°W)
- Each GOES-R-series observatory carries a Space Environment In-Situ Suite (SEISS)
 - GOES-19 SEISS was turned on on 22 August 2024



Magnetospheric Particle Sensor – High Energy (MPS-HI)

MRD 3.3.6.1.3 Magnetospheric Electrons and Protons: Medium and High Energy

- Primary purpose: measure radiation belt particle fluxes in the energy range responsible for internal charging
- 5 electron telescopes and 5 proton telescopes
 - 30 deg full-width conical FOVs, centers separated by 35 deg
- Each electron telescope:
 - 10 differential channels, 50 keV 4 MeV
 - 2 integral channels, >2 MeV and >4 MeV(latter not part of L1b)
- Each proton telescope:
 - 11 differential channels
 - 7 channels, 80 keV 1 MeV (trapped)
 - 4 channels, 1-12 MeV (solar protons)
- Two dosimeters (250 and 100 mil Al)
 - Distinguish particles depositing < 1 MeV and >1 MeV


Credit: SEISS-TR-MH074-2 Rev C, Figure 3-1

ALERT: Electron 2 MeV Integral Flux Exceeded 1000 pfu

Space Weather Message Code: ALTEF3

Serial Number: 3381

Issue Time: 2023 Nov 07 1624 UTC

ALERT: Electron 2MeV Integral Flux exceeded 1000pfu

Threshold Reached: 2023 Nov 07 1600 UTC

Station: GOES16

Potential Impacts: Satellite systems may experience significant

charging resulting in increased risk to satellite systems.

Space Weather Message Code: ALTEF3

Serial Number: 3386

Issue Time: 2023 Nov 12 0500 UTC

CONTINUED ALERT: Electron 2MeV Integral Flux

exceeded 1000pfu

Continuation of Serial Number: 3385 Begin Time: 2023 Nov 07 1600 UTC

Yesterday Maximum 2MeV Flux: 4373 pfu

- □ Space Weather Prediction Center (SWPC) alert at 1000 electrons/(cm² sr s) [pfu] was developed in consultation with the satellite industry
- Based always on GOES-East observations
 - Fluxes systematically lower than at GOES-West by factor of 2.5 [Meredith et al., 2015]
- ☐ First alert was issued on 18 May 1995
- MeV electron fluxes have been very elevated starting in 2015
 - > Primarily owing to the action of stream interaction regions (interface between solar wind of coronal hole and quiet sun origins) on the magnetosphere

Steps of Radiation Belt Electron and Proton Calibration

- > Initial Data Calibration
 - **□** Dead time correction
 - **☐** Bowtie Analysis (electrons only)
 - **□** Background removal for electron channels E9-E11
- ► MPS-HI Telescope Cross-Comparison
 - □ Statistical comparison between telescopes observing the same pitch angles
- Solar Energetic Particle Cross-Comparison
 - ☐ Comparison between MPS-HI and Solar and Galactic Proton Sensor (SGPS, also onboard GOES-R satellites) during an SEP event under high solar wind dynamic pressure
- Cross-Satellite Comparison of Trapped Particles
 - **□** Comparison between GOES-R satellites

Inverse Model: Bowtie Method

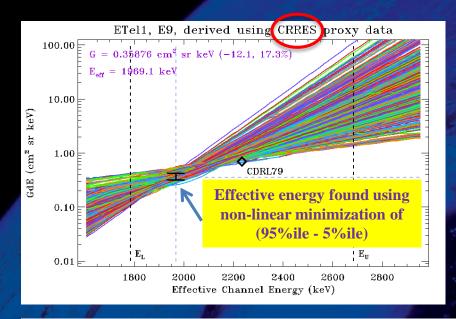
Differential Channels

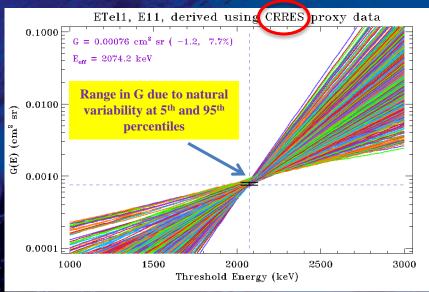
$G\delta E = \frac{\int_{0}^{\infty} j(E)G(E)dE}{j(E_{eff})}$

Bowtie analysis, differential: cm² sr keV

$$j(E_{eff}) = \frac{R}{G\delta E}$$

L1b processing (diagonalized)


Integral Channel


$$G_{I}(E_{L}) = \frac{\int_{0}^{\infty} j(E)G(E)dE}{\int_{E_{L}}^{\infty} j(E)dE}$$

Bowtie analysis, integral: cm² sr

$$J(E > E_L) = \frac{R}{G_L}$$

L1b processing

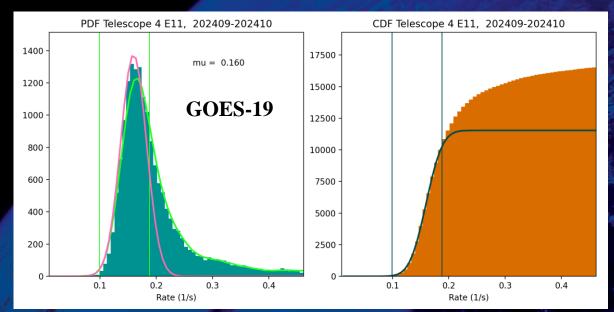
Backgrounds Trending: Methodology

GOES-19 MPS-HI E9-E11 Revised Background Removal

The baseline algorithm is inadequate to correct for the observed slowly-varying background due presumably to Galactic Cosmic Ray (GCR) protons. The background removal coefficients were corrected so as to better account for the GCR proton contamination. This involves a number of observations and assumptions (demonstrated for MPS-HI E11 (> 2 MeV) channel):

- **☐** The first assumption is that the MPS-HI backgrounds are due to the GCRs.
- □ Solar and Galactic Proton Sensor (SGPS) P11 channel is the best single measure of GCR fluxes. Use the -X sensor (looking east)
- $\square M_{ELE}(i, E11) = N_{ELE}^{true}(i, E11) C_{ELE}^{obc}(i, E11) = N_{ELE}^{true}(i, E11) \gamma(i, E11) F_{SGPS-X_{P11}}$
- \square The coefficient γ is calculated separately for each telescope.
- Assuming that SGPS-X P11 can track the GCR background well, we can average the SGPS-X P11 fluxes and the background fluxes in E11 due to the GCRs, yielding

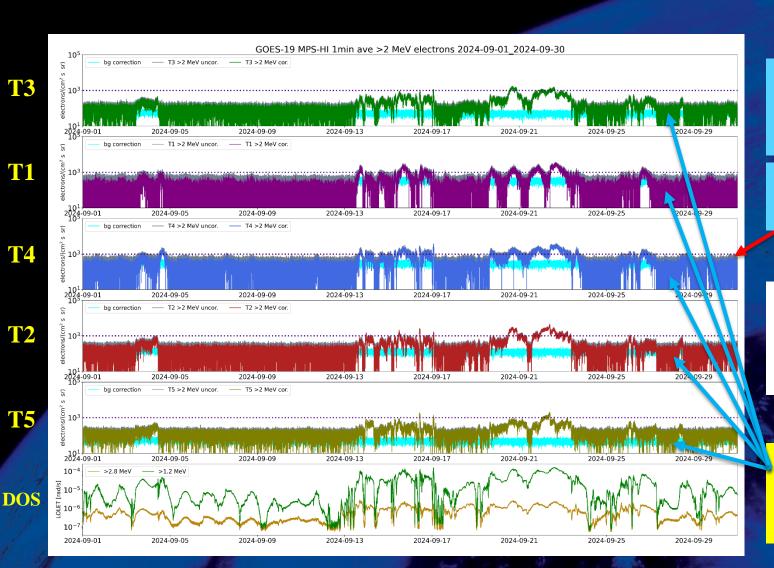
$$\gamma(i,E11) = \frac{\overline{C_{ELE}^{obc}(i,E11)}}{\overline{F_{SGPS-X_{P11}}}} = G_{P11} \frac{\overline{C_{ELE}^{obc}(i,E11)}}{\overline{C_{P11}}} = G_{P11}$$


Backgrounds Trending: Methodology

Modeling the GCR background

- **Assume that the peak and the part of the PDF below the peak are dominated by the rates due to GCRs, model as Gaussians.**
- Saussian PDF: $f(x) = a exp \left[-\frac{(x-\mu)^2}{2\sigma^2} \right]$
- * Gaussian CDF: $F(x) = a\sigma \sqrt{\frac{\pi}{2}} \left[1 + erf \left(\frac{x-\mu}{\sigma\sqrt{2}} \right) \right]$

- ❖ Conduct the analysis using 5-min averages for 09/01/2024-10/31/2024.
- Fit the CDF that is varying smoothly, instead of PDF.
- $C_{ELE}^{obc}(i, E11) = \mu_{E11}$ (fitted E11 mean).
- * Do the same for SGPS-X P11 counts, $\overline{C_{P11}} = \mu_{P11}$
- **Repeat for E9, E10, E10A.**
- **Estimate gammas.**
- **❖** Apply to the 1s L1b data.



T3

Application of the revised background removal to GOES-19 MPS-HI E11 data

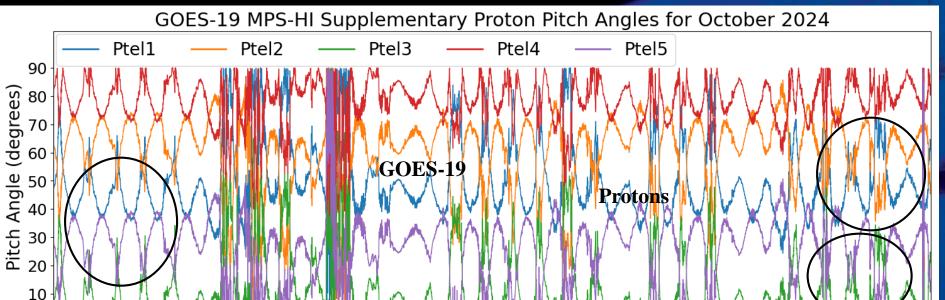
GOES-19 channel E11

(> 2 MeV)

1000 electrons per (cm² sr s)

SWPC alert level very close to uncorrected backgrounds

Corrected backgrounds more representative of the GCR spectrum



2024-10-01

GOES-19 MPS-HI Telescope Cross-Comparison: Method

2024-10-16

Universal Time

- ► Comparison of responses of MPS-HI telescopes when central pitch angle is the same
- ► Under such conditions, telescopes should be measuring the same flux for the same effective energy
- > Use Nelder-Mead method to minimize the objective function: sum of squares of the following difference term

$$R(m) = \frac{SF_i(m)J_i(m) - SF_j(m)J_j(m)}{SF_i(m)J_i(m) + SF_j(m)J_j(m)}$$

2024-10-06 **October 10 storm**

Rowland, W., and R. S. Weigel (2012), Intra-calibration of particle detectors on a three-axis stabilized geostationary platform, *Space Weather*, 10, S11002, doi:10.1029/2012SW000816.

- ➤ Use supplementary pitch angles (fold pitch angles > 90 degrees) to increase the number of matches
- > To reduce effect of statistical noise, use only matches where both fluxes correspond to at least 1000/100 counts/min
- > Because Scale Factors are only valid in a relative sense, they must be normalized to a reference telescope

GOES-19 MPS-HI Telescope Cross-Comparison: Results

Electron Scale Factors September 1-October 31, 2024

Energy band	Count threshold	T1	T2	Т3	T4	Т5
E 1	1000/min	1.104	0.851	1.037	1.000	0.969
E2	1000/min	1.069	0.882	1.018	1.000	1.122
E3	1000/min	0.883	0.773	0.751	1.000	0.967
E4	1000/min	0.996	0.877	1.022	1.000	0.977
E5	1000/min	1.026	0.963	1.037	1.000	0.940
E6	1000/min	1.082	0.823	0.988	1.000	1.175
E7	1000/min	1.047	0.989	0.960	1.000	0.841
E8	100/min	0.968	1.064	1.011	1.000	0.955
E9	100/min	1.058	1.043	1.136	1.000	0.960
E10	100/min					
E11	100/min	0.957	0.603	1.157	1.000	

Blue: <10%, Green: 10-25%, Red: >25%

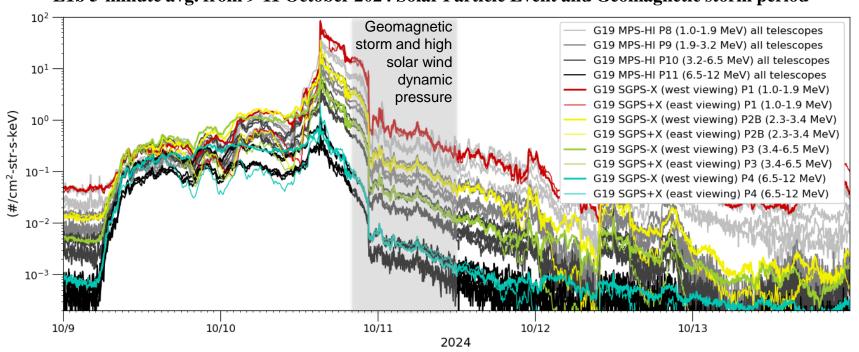
Pink: <100 PA matches
Orange: <1000 PA matches

Proton Scale Factors September 1-October 31, 2024

Energy band	Count threshold	T1	T2	Т3	T4	Т5
P1	1000/min	0.784	1.000	2.962	1.535	1.336
P2	1000/min	1.121	1.000	1.788	1.701	1.838
Р3	1000/min	1.091	1.000	1.791	1.611	1.486
P4	1000/min	1.189	1.000	1.850	1.937	1.678
P5	100/min	1.239	1.000	1.968	1.909	1.835
P6	100/min	0.992	1.000	1.502	1.865	1.791
P7	100/min	1.011	1.000	1.877	1.974	1.991

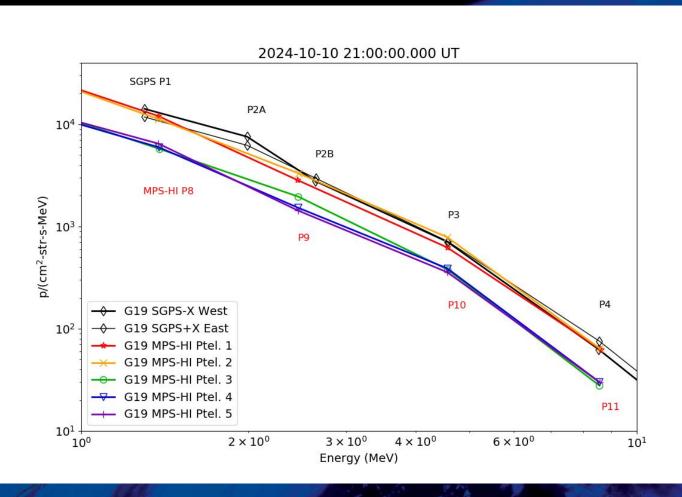
Technique not applicable to solar proton channels P8-P11

- Electron scale factors are mostly within the 25% requirement. No pitch angle matches for E10 and very few for E11, due to lack of high fluxes.
- Proton scale factors are within the 25% requirement for PTel1, but quite high for PTels 3-5. Two distinct telescope families.



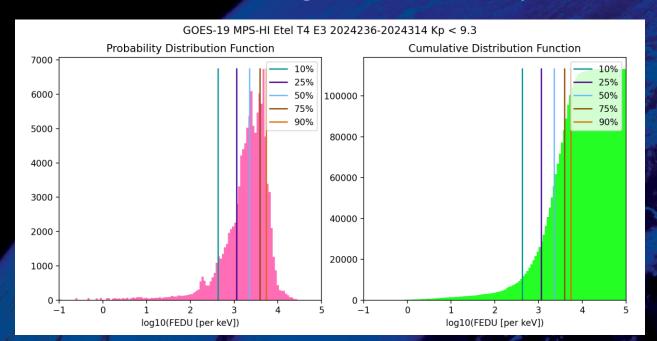
Solar Energetic Particle (SEP) Channels Cross-Comparison: G19 MPS-HI and SGPS Time series

L1b 5-minute avg. from 9-11 October 2024 Solar Particle Event and Geomagnetic storm period


- Fluxes from the GOES-19 MPS-HI Solar Energetic Particle (SEP) channels (P8-P11) are shown by the gray traces (all 5 proton telescopes), and SGPS P1-P4 channels with colored traces.
- MPS-HI P8-P11 have energy bands similar to SGPS P1, P2B, P3 and P4.
- In all four MPS-HI channels shown (P8-P11), two MPS-HI proton telescopes (PTels) are in close agreement with SGPS and three are reporting low.
- The period indicated by the gray shaded region is used for the SEP channel cross comparisons.

SEP Channels Cross-Comparison: Example Spectra

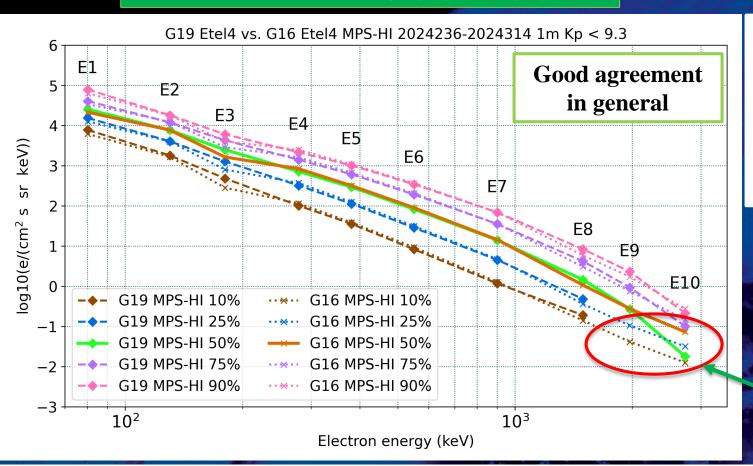
- MPS-HI P8-P11 and SGPS P1-P4 5-minute averaged L1b spectra at 21 UT on 2024-10-10.
- MPS-HI PTel-1 and -2 are in close agreement with SGPS. MPS-HI PTels 3-5 are reporting low.
- The north-to-south order of MPS-HI proton telescopes is PTel-1, -4, -2, -5, -3.


Cross-Satellite Comparison of Trapped Particles: Technique

Compare statistical differential flux spectra from GOES-16 and GOES-19, separated by ~1 hour in Magnetic Local Time (MLT):

- □ GOES-16 (75.2W) to GOES-19 (89.5W), 08/23/2024-11/09/2024 (~2.5 months)
- ☐ Calculate the particle distributions for all channels and telescopes
- **☐** Compare flux percentile spectra for telescopes of the same orientation
 - \triangleright 0, \pm 35, \pm 70 deg from zenith (radially outward)

- PDF: Number of fluxes in each flux bin
- CDF: Number of fluxes up to a flux bin
- Percentile fluxes: Flux at which number of fluxes < percentile
- 50% is the median of the distribution



Cross-Satellite Comparison of Trapped Particles: Electron Results

GOES-19 vs GOES-16 Electrons, 08/23/2024-11/09/2024

- ➤ GOES-16 E3 fluxes are appreciably lower
- ➤ E9-E10 fluxes are affected by the applied background correction

Missing or significantly lower fluxes are at residual background levels

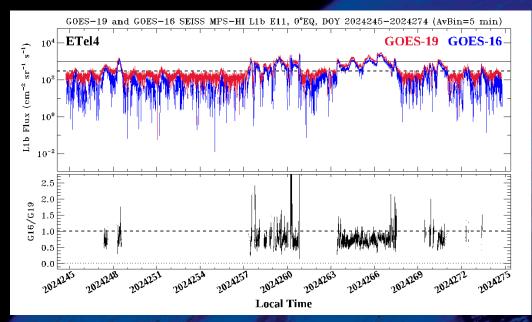
Boudouridis, A., Rodriguez, J. V., Kress, B. T., Dichter, B. K., & Onsager, T. G. (2020). Development of a bowtie inversion technique for real-time processing of the GOES-16/-17 SEISS MPS-HI electron channels. Space Weather, 18, e2019SW002403. https://doi.org/10.1029/2019SW002403



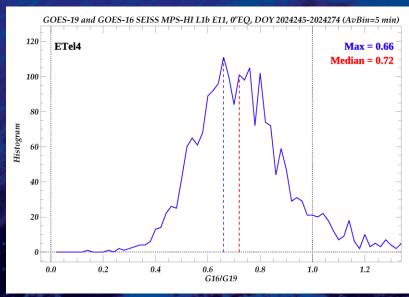
Cross-Satellite Comparison of Trapped Particles: Proton Results

GOES-19 vs GOES-16 Protons, 08/23/2024-11/09/2024

- ➤ GOES-16 fluxes are significantly lower than GOES-19 in channels P1-P5 and all telescopes)
- This observation has been documented extensively
- ➤ A degradation of the proton detectors is actively being investigated
- The proton spectrum is flattening for channels
 P6 and P7: effect of
 Solar Energetic
 Particle (SEP) events



Cross-Satellite Comparison of Trapped Particles (E11): Technique and Results



- Plot GOES-19 and GOES-16 MPS-HI channel E11 (> 2 MeV) Electron Telescope 4 (ETel4) 5-min averaged fluxes for September 2024.
- ETel4 is the central electron telescope looking along the equator.
- Take the ratio GOES-16/GOES-19 of E11 ETel4 5-min average fluxes.
- Make the histogram of the ratio GOES-16/-19 MPS-HI E11 ETel4 5-min average fluxes > 300 pfu.

The G16/G19 flux ratios are in general below 1. Lack of high fluxes affects the results.

The median of the GOES-16 to GOES-19 T4 >2 MeV flux ratio distribution is 0.72.

Concluding notes

- > Steps taken to ensure accurate flux determination
 - **□** Dead time correction
 - **□** Bowtie Analysis for accurate conversion from electron counts to fluxes
 - □ Background removal for channels E9-E11 for accurate GCR backgrounds specification and removal
- Steps taken to ensure accurate calibration.
 - □ Cross-telescope comparison: Statistical comparison between telescopes observing the same pitch angles
 - □ SEP Cross-Comparison: Comparison between MPS-HI and SGPS during an SEP event under high dynamic pressure
 - ☐ Cross-satellite: Comparison between GOES-R satellites