FengYun-3H/WAI-II Prelaunch Test Results and The Calibration Approach In-orbit National Satellite Meteorological Centre (National Center for Space Weather) Yafen Yang 2025. 03. 17 # CONTENT - 01 Introduce - Prelaunch test results - OB Calibration Approach In-orbit - 04 Conclude # —, Introduce #### Wide-field Auroral Imager (WAI) - a new instrument on the Fengyun-3D (FY-3D) satellite which was launched on November 15, 2017. - It produces the far ultraviolet (FUV) images of the aurora and the ionosphere in wide field of view (FOV) and high spatial resolution, by imaging the N₂ Lyman-Birge-Hopfiled (LBH) bands emissions. - WAI is the first optical remote sensor for space weather and space physics in China. #### WAI-II - The same as WAI on FY-3D, except that it will image the emissions in two LBH bands (140-160nm, 160-180nm). - will be launched this year. Illustration of the operation of WAI. The auroral oval is represented in green. The thick black represents the orbit of FY-3D. The red and blue lines represent the FOVs of the two cameras. # **FY WAI requirement summary** | Parameter | Value | |--------------------------|--| | Wayalangth | 140-180 nm (WAI) | | Wavelength | 140-160 nm, 160-180 nm (WAI-II) | | Field of view (FOV) | 130° (cross-track) $ imes 10^\circ$ (along-track) (instantaneous) 130° $ imes 130^\circ$ (total) | | Nadir Spatial Resolution | ≤ 10 km (at 110km altitude) | | Time Resolution | ≤ 2 min for scanning mode
~100 min for nadir mode | | Overall Sensitivity | ≥ 6.0 counts/(Rayleigh·s) | | Dynamic Range | 200-8000 Rayleigh | # **WAI-II** main Prelaunch test parameters | Number | Parameter | Number | Parameter | |--------|----------------------------|--------|---| | 1 | Angular Resolution | 7 | FOV Uniformity (Flat Field Calibration) | | 2 | FOV | 8 | Pointing Accuracy | | 3 | Detection Sensitivity | 9 | Geometric Calibration (Detector Distortion Correction, and Optical Distortion Correction) | | 4 | Operating Wavelength Range | 10 | Detector Response Linearity Calibration | | 5 | Dynamic Range | 11 | Dark Field Calibration | | 6 | Temporal Resolution | | | # 1. Angular Resolution WAI-II Angular Resolution Requirement Angular Resolution Test Diagram #### The Rayleigh criterion: when the imaging contrast ratio of two adjacent image points is not less than 15%, these two points can be resolved. The contrast ratio calculation formula is: $$C = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \times 100\%$$ #### Camera #1 Central field 50% field 70% field #### Transverse | | Contrast Ratio | |---------|----------------| | Central | 51.1% | | 50% | 32.1% | | 70% | 32.9% | #### Longitudinal | | Contrast Ratio | |---------|-----------------------| | Central | 37.0% | | 50% | 22.9% | | 70% | 32.5% | | Camera #2 Can | era #3 Camera #4 | |---------------|------------------| |---------------|------------------| | Tra | Transverse | | verse Transverse | | Transverse | | |---------|--|--|------------------|----------------|------------|----------------| | | Contrast Ratio | | | Contrast Ratio | | Contrast Ratio | | Central | 56.4% | | Central | 36.8% | Central | 37.0% | | 50% | 28.0% | | 50% | 63.6% | 50% | 49.1% | | 70% | The angular resolutions of 4 cameras meet the 0.8° | | | 30.7% | | | | | angular resolution requirement. | | | | | | | Lan | | المماثلمينك | |--------------|--------------|--------------| | Longituainai | Longituainai | Longitudinal | | | =00.00.0 | | | | Contrast Ratio | | Contrast Ratio | | Contrast Ratio | |---------|-----------------------|---------|-----------------------|---------|----------------| | Central | 34.8% | Central | 38.5% | Central | 20.0% | | 50% | 32.7% | 50% | 35.4% | 50% | 22.3% | | 70% | 31.7% | 70% | 19.2% | 70% | 24.1% | #### 2. Field of View - WAI uses two sub-optical systems with a sub-FOV of 68°×10° to form a 130°×10° FOV, and obtains a total FOV of 130°×130° by scanning in the 10° FOV direction. - FOV test includes 3 items: - (1) The sub-optical system FOV meets the 68°×10° requirement. - (2) The sub-optical system FOV stitching meets the requirement. - (3) The scanning component enables the imager to scan 120° along the optical axis in the 10° FOV direction. # (1) The Sub-optical System FOV Meets the $68^{\circ} \times 10^{\circ}$ Requirement | Test It | :em | Test Data | |--------------------|------------------------|---------------| | FOV of Camera #1 | 10° Direction | 11.75° | | FOV OF Camera #1 | 68° Direction | 71.5 ° | | FOV of Camera #2 | 10° Direction | 11.25° | | FOV OF Camera #2 | 68° Direction | 70.75° | | FOV of Camera #3 | 10° Direction | 10.875° | | FOV OF Carriera #3 | 68° Direction | 70.375° | | FOV of Comore #4 | 10° Direction | 11.5° | | FOV of Camera #4 | 68° Direction | 71.25° | #### (2) The Sub-optical System FOV Stitching Meets the Requirement Single channel full field-of-view angle γ : $$\gamma = \frac{\omega_1}{2} + \frac{\omega_2}{2} + \alpha + \beta$$ ω1: FOV of Camera #1, ω2: FOV of Camera #2 **Test Data** | Channel | $\omega_{\scriptscriptstyle 1}$ | ω_2 | α | β | γ | |---------|---------------------------------|------------|--------|--------|----------| | LBHS | 71.5° | 70.75° | 32.43° | 32.62° | 136.175° | | LBHL | 70.375° | 71.25° | 31.85° | 32.54° | 135.202° | # (3) The Scanning Component Enables the Imager to Scan 120 $^{\circ}$ along the Optical Axis in the 10 $^{\circ}$ FOV Direction The FOV angle in the scanning direction is determined by the 10° direction FOV angle and the scanning angles $\alpha 1$ and $\alpha 2$ between the Hall limit and the sub-satellite point optical axis: γ 2 = 10° direction FOV angle+ α 1 + α 2 #### FOV angle in the scanning direction test data | Channel | FOV angle in 10° direction | α_1 | a_2 | γ_2 | |---------|----------------------------|------------------|---------|------------| | LBHS | 11.25° | 62.898° | 62.358° | 136.506° | | LBHL | 10.875° | 62.898° | 62.358° | 136.131° | #### Total FOV of two channels test data | Channel | Total FOV | |---------|-------------------| | LBHS | 136.175°×136.506° | | LBHL | 135.202°×136.131° | The total FOV of two channels Meet the $130^{\circ} \times 130^{\circ}$ total FOV requirement. # 3. Detection Sensitivity The calculation formula for the overall sensitivity of WAI is: $$S(\lambda) = N \cdot A \cdot \omega \cdot \rho(\lambda) \cdot \tau(\lambda) \cdot \varepsilon(\lambda) \cdot \frac{10^6}{4\pi}$$ $S(\lambda)$: pixel sensitivity of instrument N: total number of pixels of detector, N=1062 A: entrance pupil area ω : pixel solid angle, $\omega = 1.95 \times 10^{-4} \text{sr}$ $\rho(\lambda)$: reflectivity of a mirror $\tau(\lambda)$: transmittance of a filter $\varepsilon(\lambda)$: quantum efficiency of a detector #### Reflectivity of 4 mirrors of 4 cameras Testing the reflectivity of the accompanying films yields: The reflectivity of the 4 mirrors M1, M2, M3, and M4 of Camera #1 and Camera #2 is the same. The reflectivity of Camera #3 and Camera #4 is the same. #### Camera #1 & 2 #### Camera #3 & 4 #### Transmittance of filters of 4 cameras ### Quantum efficiency of 4 detectors # Entrance pupil areas of 4 cameras | Camera | Aperture length (mm) | Aperture width (mm) | Aperture area (mm²) | Coefficient | Entrance pupil area (mm²) | |--------|----------------------|---------------------|---------------------|-------------|---------------------------| | 1 | 28.49 | 13.21 | 376.35 | 8.16 | 46.12 | | 2 | 28.51 | 13.19 | 376.05 | 8.16 | 46.08 | | 3 | 28.52 | 13.22 | 377.03 | 8.16 | 46.20 | | 4 | 28.51 | 13.22 | 376.90 | 8.16 | 46.19 | #### Camera #1 The overall sensitivity of 4 cameras at various wavelengths Camera #3 #### Overall Average Sensitivity of 4 cameras | Channel | Camera | Arithmetic Average Sensitivity (Units: counts/s/Rayleigh) | |---------|--------|---| | LDLIC | 1 | 9.8870952 | | LBHS | 2 | 9.0127480 | | LDIII | 3 | 6.8247120 | | LBHL | 4 | 7.0754260 | The overall average sensitivity of 4 cameras meet the 6.0 counts/s/Rayleigh requirement. #### 4. Operating Wavelength Range Spectral radiation responsivity Q of cameras: $$Q = \rho(\lambda) \cdot \tau(\lambda) \cdot \eta(\lambda)$$ $\rho(\lambda)$: reflectivity of a mirror, $\tau(\lambda)$: transmittance of a filter, $\eta(\lambda)$: quantum efficiency of a detector #### **Test includes 3 items:** - (1) The imager operates in the wide bands of 140nm-160nm and 160nm-180nm. It is necessary to measure the wavelength distribution of the responsivity of the imager in the band of 130nm-200nm. - (2) Calculate the average responsivity in the 140nm 160nm and 160nm 180nm bands respectively, and the average responsivity in the band of 130nm 200nm except for the operating bands. - (3) Calculate the ratio of the average responsivity outside the operating band to the average response efficiency within the band. #### Camera #1 (1) Measure wavelength distribution of spectral radiation responsivity of imager in the band of 130nm-200nm #### Camera #3 (2) Calculate the average responsivity in the 140nm-160nm and 160nm-180nm bands respectively, and the average responsivity in the band of 130nm-200nm except for the operating bands | Bands | Average Spectral Responsivity | |---|-------------------------------| | Camera #1 (140nm-160nm) | 0.0013008588 | | 130nm-200nm except for the operating bands of Camera #1 | 1.8890281e-007 | | Camera #2 (140nm-160nm) | 0.0011868490 | | 130nm-200nm except for the operating bands of Camera #2 | 1.8321733e-007 | | Camera #3 (160nm-180nm) | 0.00089638192 | | 130nm-200nm except for the operating bands of Camera #3 | 1.6400313e-006 | | Camera #4 (140nm-160nm) | 0.00092951282 | | 130nm-200nm except for the operating bands of Camera #4 | 1.7301979e-006 | # (3) Calculate the ratio of the average responsivity outside the operating band to the average responsivity within the band #### Channel inhibition ratio of Camera #1 (Operatinging band: 140nm-160nm) | Wavelength (nm) | Average Spectral Responsivity (ASR) | Target Strength | Response Signal | Test value of inhibition ratio | | |-----------------|-------------------------------------|-----------------|-----------------|--------------------------------|--| | 140-160 | 0.0013008588 | 3578 | 4.6544727 | | | | 135.6 | 1.5266848e-008 | 7000 | 0.00010686794 | 2.2960267e-005 | | | 130.4 | 8.1154430e-010 | 10000 | 8.1154430e-006 | 1.7435795e-006 | | | 121.6 | 8.5991110e-010 | 10000 | 8.5991110e-006 | 1.8474941e-006 | | | 160-180 | 3.4578905e-007 | 2385 | 0.00082470688 | 0.00017718589 | | | 180-220 | 1.1501050e-012 | 2545 | 2.9270171e-009 | 6.2886116e-010 | | | | Comprehensive inhibition ratio | | | | | #### Channel inhibition ratio of Camera #2 (Operatinging band: 140nm-160nm) | Wavelength (nm) | Average Spectral Responsivity (ASR) | Target Strength | Response Signal | Test value of inhibition ratio | |-----------------|-------------------------------------|-----------------|-----------------|--------------------------------| | 140-160 | 0.0011868490 | 3578 | 4.2465456 | | | 135.6 | 8.2048961e-009 | 7000 | 5.7434273e-005 | 1.3524940e-005 | | 130.4 | 5.2482097e-010 | 10000 | 5.2482097e-006 | 1.2358774e-006 | | 121.6 | 2.8180585e-010 | 10000 | 2.8180585e-006 | 6.6361199e-007 | | 160-180 | 3.5144171e-007 | 2385 | 0.00083818848 | 0.00019738125 | | 180-220 | 1.0610386e-012 | 2545 | 2.7003433e-009 | 6.3589176e-010 | | | 0.00021280632 | | | | #### Channel inhibition ratio of Camera #3 (Operatinging band: 160nm-180nm) | Wavelength (nm) | Average Spectral Responsivity (ASR) | Target Strength | Response Signal | Test value of inhibition ratio | |-----------------|-------------------------------------|-----------------|-----------------|--------------------------------| | 160-180 | 0.00089638192 | 2385 | 2.1378709 | | | 135.6 | 8.6256232e-010 | 7000 | 6.0379362e-006 | 2.8242754e-006 | | 130.4 | 2.2820375e-009 | 10000 | 2.2820375e-005 | 1.0674347e-005 | | 121.6 | 8.2974550e-009 | 10000 | 8.2974550e-005 | 3.8811768e-005 | | 140-160 | 2.8754288e-006 | 3578 | 0.010288284 | 0.0048123974 | | 180-220 | 1.8052880e-006 | 2545 | 0.0045944580 | 0.0021490811 | | | 0.0070137889 | | | | #### Channel inhibition ratio of Camera #4 (Operatinging band: 160nm-180nm) | Wavelength (nm) | Average Spectral Responsivity (ASR) | Target Strength | Response Signal | Test value of inhibition ratio | |-----------------|-------------------------------------|-----------------|-----------------|--------------------------------| | 160-180 | 0.00092951282 | 2385 | 2.2168881 | | | 135.6 | 8.5587517e-010 | 7000 | 5.9911262e-006 | 2.7024938e-006 | | 130.4 | 2.6020587e-009 | 10000 | 2.6020587e-005 | 1.1737439e-005 | | 121.6 | 8.3548636e-009 | 10000 | 8.3548636e-005 | 3.7687350e-005 | | 140-160 | 3.0596741e-006 | 3578 | 0.010947514 | 0.0049382349 | | 180-220 | 1.8907139e-006 | 2545 | 0.0048118668 | 0.0021705502 | | | 0.0071609123 | | | | The test values of channel inhibition ratio of 4 cameras meet the inhibition ratio requirement (<5%). #### 5. Dynamic Range The dynamic range is determined by the lowest and highest intensities that the imager can respond to. Highest response intensity: $$L_{MX} = \frac{C_{MX}}{S}$$ L_{MX} : highest detection target brightness, C_{MX} : the average maximum count rate of a pixel, S: detection sensitivity of a pixel Lowest response intensity: $$L_{MN} = \frac{1}{S \cdot t}$$ L_{MN}: lowest detection brightness, S: detection sensitivity of a pixel, t: exposure time #### **Highest and Lowest detection target brightness of 4 cameras** | Camera | Detection
Sensitivity
(counts/s/Rayleigh) | Maximum
Count Rate
(kcps) | Highest Detection
target Brightness
(Rayleigh) | Exposure Time (s) | Lowest Detection
Target Brightness
(Rayleigh) | |--------|---|---------------------------------|--|-------------------|---| | 1 | 9.8870952 | 302 | 30544.865 | 7.48 | 14.3599 | | 2 | 9.0127480 | 301 | 33397.141 | 7.48 | 15.7531 | | 3 | 6.8247120 | 302 | 44250.953 | 7.48 | 20.8036 | | 4 | 7.0754260 | 302 | 42682.941 | 7.48 | 20.0665 | The highest and lowest detection brightness meet the maximum (8000 Rayleigh) and minimum (200 Rayleigh) dynamic range requirement, respectively. #### 6. Temporal Resolution The temporal resolution requirement of the imager is 2 minutes, that is, it is required to collect a 130°×130° image within 2 minutes. The software evaluation results show that the temporal resolution for scanning an image is: 74594.6256s - 74482.9831s = 111.6425s The temporal resolution meets the requirement. | 图像幅计数_解析值 | 图像帧计数_源码 | 图像帧计数_解析值 | LBHS通道FPGA状态参数
_摄像模式_解析值 | 时间码
单位:ms | | |-----------|----------|-----------|-----------------------------|--------------|---| | 370 | 0x172 | 370 | 凝视模式 | 74449, 1586 | Total Control of the | | 371 | 0x173 | | 凝视模式 | 74457, 702 | | | 372 | 0x174 | | 凝视模式 | 74466, 2421 | | | 373 | 0x175 | | 凝视模式 | 74474, 7793 | | | 374 | 0x176 | | 凝视模式 | 74483, 2776 | | | 1 | 0x1 | 1 | 120°扫描探测模式 | 74482, 9831 | | | 1 | 0x2 | 2 | 120°扫描探测模式 | 74491.5284 | | | 1 | 0x3 | 3 | 120°扫描探测模式 | 74500.0655 | | | 1 | 0x4 | 4 | 120°扫描探测模式 | 74508. 6058 | | | 1 | 0x5 | 5 | 120°扫描探测模式 | 74517.1493 | | | 1 | 0x6 | 6 | 120°扫描探测模式 | 74525. 6927 | | | 1 | 0x7 | 7 | 120°扫描探测模式 | 74534. 2324 | | | 1 | 0x8 | 8 | 120°扫描探测模式 | 74542.7706 | | | | 0x9 | | 120°扫描探测模式 | 74551. 2593 | | | 100 | OxA | | 120°扫描探测模式 | 74559. 8544 | | | | 0xB | | 120°扫描探测模式 | 74568, 2856 | | | | 0xC | | 120°扫描探测模式 | 74576. 9378 | | | 1 | 0xD | 13 | 120°扫描探测模式 | 74585, 2977 | | | | | | | | 扫描一幅图像时间分辨率 | | 2 | 0x1 | 1 | 120°扫描探测模式 | 74594, 6256 | =74594.6256秒-74482.9831秒
=111.6秒 | | 2 | 0x2 | 2 | 120°扫描探测模式 | 74603. 5295 | | | 2 | 0x3 | 3 | 120°扫描探测模式 | 74612.0675 | | | 2 | 0x4 | 4 | 120°扫描探测模式 | 74620.59 | | #### 7. FOV Uniformity (Flat Field Calibration) The purpose of image-plane flat-field calibration is to calibrate the non uniformity of the response at different positions on the image plane. During the calibration test, the diffuse emission plate illuminated by a far ultraviolet deuterium lamp is imaged using a vacuum condition imaging instrument, and a local flat field calibration image of the image plane is captured; Then rotate the turntable to allow the imaging device to capture images of the diffuse beam from different fields of view; Extract flat field images from different fields of view and stitch them together to obtain a full-scale flat field calibration image; Normalize the center response of the image plane to obtain calibration data for flat field calibration. 21 position stitched images Camera #1 Camera #2 Camera #3 Camera #4 Smoothed images # Camera #2 Camera #1 Camera #4 #### **Flat Field Matrix** Normalized images #### **8. Pointing Accuracy** WAI has one-dimensional pointing ability. The pointing accuracy index characterizes the difference between the actual pointing angle and the command pointing angle. | Serial
Number | Parameter | Record | | Remarks | |------------------|--------------------------|--------|-------------------|---| | | | 2′28″ | | Return after turning 30° towards Hall B | | 1 | 1 0 Pointing Deviation | 2′19″ | 2′54″
(0.048°) | Return after turning 30° towards Hall B | | | | 3′25″ | | Return after turning 30° towards Hall A | | | | 3′24″ | | Return after turning 30° towards Hall A | | | | 2′59″ | | | | 2 | 2 30° Pointing Deviation | 3'4" | 3′2″
(0.051°) | From sub - satellite point to Hall B | | | | | (0.001) | | | Continu | ed _{Serial}
Number | Parameter | Record | | Remarks | |---------|--------------------------------|----------------------------|-------------------------|-------------------|--------------------------------------| | | 3 | -30° Pointing Deviation | 1'59"
2'3"
2'0" | 2′1″
(0.034°) | From sub - satellite point to Hall A | | | 4 | 60° Pointing Deviation | 6′29″
9′39″
10′ | 8'42"
(0.145°) | From sub - satellite point to Hall B | | | 5 | -60° Pointing Deviation | 1'39"
2'26"
2'21" | 2'9"
(0.036°) | From sub - satellite point to Hall A | | | 6 | Average Pointing Deviation | | 2′39″(0.044° |) 4'57" (0.0825°) | The Pointing Deviation meets the pointing accuracy requirement (0.2°) . #### 9. Geometry Calibration According to the measured dot matrix image, sample and query the table for calibration. - (1) Detector Geometric Distortion Correction Range: $640 \le X \le 950$, $470 \le Y \le 1120$ - (2) Optical Geometric Distortion Correction Range: #### **Correction Formula:** $$X' = X + \Delta X_D([(X-X_{\min}) \times 10.0], [(Y-Y_{\min}) \times 10.0])$$ $$Y' = Y + \Delta Y_D([(X-X_{\min}) \times 10.0], [(Y-Y_{\min}) \times 10.0])$$ | Camera | Optical Distortion Correction Range | |--------|-------------------------------------| | 1 | 730≤X≤870, 500≤Y≤1100 | | 2 | 670≤X≤810, 490≤Y≤1090 | | 3 | 690≤X≤830, 490≤Y≤1090 | | 4 | 650≤X≤790, 490≤Y≤1090 | # **—**, Prelaunch test results + # 4+4+4+4+4+4+4 Participate to to to to to to ******* ************************************ * * * * * * * ****** 4144 4 4 4 4 1144 1144 11 4 4 4 4 114 #### **Optical Geometric Distortion Correction** The Geometric Calculation can correct the geometric distortion. #### **10. Detector Response Linearity Calibration** Since there is a missed-count situation in the counting imaging circuit at high count rates, it is necessary to calibrate the missed-count rate under different count rate conditions and modify the photon count of the image with this data. #### **Detector 1 response linearity calibration data and results** | Number | Area (mm²) | Front End
Count Rate
(cps) | Effective
Count Rate
(cps) | Area
Normalization | Normalization of Effective Count Rate | Missing
Counting | correction
coefficient | |--------|------------|----------------------------------|----------------------------------|-----------------------|---------------------------------------|---------------------|---------------------------| | 1 | 4 | 6668 | 6529 | 1 | 1 | 0 | 1 | | 2 | 16 | 26103 | 24135 | 4 | 3.69658 | 0.0758539 | 1.08208 | | 3 | 36 | 58224 | 48727 | 9 | 7.46316 | 0.170759 | 1.20592 | | 4 | 64 | 101162 | 73780 | 16 | 11.3004 | 0.293728 | 1.41589 | | 5 | 100 | 155149 | 94723 | 25 | 14.5080 | 0.419680 | 1.72318 | | 6 | 144 | 215799 | 106566 | 36 | 16.3219 | 0.546613 | 2.20562 | | 7 | 256 | 351105 | 104275 | 64 | 15.9711 | 0.750452 | 4.00725 | **Detector** 2 Response Linearity Results 3 38 | Number | Area (mm²) | Front End
Count Rate
(cps) | Effective
Count Rate
(cps) | Area
Normalization | Normalization of Effective Count Rate | Missing
Counting | correction
coefficient | |--------|------------|----------------------------------|----------------------------------|-----------------------|---------------------------------------|---------------------|---------------------------| | 1 | 4 | 5386 | 5308 | 1 | 1 | 0 | 1 | | 2 | 16 | 21226 | 19922 | 4 | 3.75320 | 0.0616993 | 1.06576 | | 3 | 36 | 47332 | 40831 | 9 | 7.69235 | 0.145294 | 1.16999 | | 4 | 64 | 82783 | 63773 | 16 | 12.0145 | 0.249093 | 1.33172 | | 5 | 100 | 127586 | 84769 | 25 | 15.9700 | 0.361198 | 1.56543 | | 6 | 144 | 180284 | 100025 | 36 | 18.8442 | 0.476550 | 1.91040 | | 7 | 256 | 302230 | 107316 | 64 | 20.2178 | 0.684097 | 3.16553 | Calibration Data and **Detector** | Number | Area (mm²) | Front End
Count Rate
(cps) | Effective
Count Rate
(cps) | Area
Normalization | Normalization of Effective Count Rate | Missing
Counting | correction coefficient | |--------|------------|----------------------------------|----------------------------------|-----------------------|---------------------------------------|---------------------|------------------------| | 1 | 4 | 5900 | 5798 | 1 | 1 | 0 | 1 | | 2 | 16 | 23818 | 22107 | 4 | 3.81287 | 0.0467834 | 1.04908 | | 3 | 36 | 53119 | 45005 | 9 | 7.76216 | 0.137538 | 1.15947 | | 4 | 64 | 93554 | 69498 | 16 | 11.9865 | 0.250841 | 1.33483 | | 5 | 100 | 140437 | 89352 | 25 | 15.4108 | 0.383567 | 1.62224 | | 6 | 144 | 203852 | 103995 | 36 | 17.9364 | 0.501768 | 2.00710 | | 7 | 256 | 340973 | 103933 | 64 | 17.9257 | 0.719911 | 3.57030 | | | | | | | | | | #### **Detector 4 response linearity calibration data and results** | Number | Area (mm²) | Front End
Count Rate
(cps) | Effective
Count Rate
(cps) | Area
Normalization | Normalization of Effective Count Rate | Missing
Counting | correction
coefficient | |--------|------------|----------------------------------|----------------------------------|-----------------------|---------------------------------------|---------------------|---------------------------| | 1 | 4 | 5574 | 5475 | 1 | 1 | 0 | 1 | | 2 | 16 | 21970 | 20519 | 4 | 3.74776 | 0.0630594 | 1.06730 | | 3 | 36 | 49508 | 42493 | 9 | 7.76128 | 0.137636 | 1.15960 | | 4 | 64 | 87768 | 66626 | 16 | 12.1691 | 0.239429 | 1.31480 | | 5 | 100 | 135059 | 88014 | 25 | 16.0756 | 0.356975 | 1.55515 | | 6 | 144 | 189428 | 102314 | 36 | 18.6875 | 0.480903 | 1.92642 | | 7 | 256 | 320529 | 106786 | 64 | 19.5043 | 0.695245 | 3.28133 | #### 11. Dark Field Calibration Mainly test the dark count of each channel under no light conditions. Each channel is measured 3 times, with a cumulative time of 600 seconds per measurement. Dark count rate (counts/s) = (total counts - missed counts) \div time Actual measurement result (counts/s. cm²) = dark count rate \div effective area The effective area of the detector is 4.98cm² Test Result of Dark Count Rate | Test Frequency | | Test Result of Dark Count Rate (counts/s) | Actual Test Result (counts/s.cm²) | Remark | |----------------|---|---|-----------------------------------|--------| | | 1 | 1.19000 | 0.238956 | 采集600s | | 通道T01 | 2 | 0.415000 | 0.083333 | 采集600s | | | 3 | 0.401667 | 0.0806560 | 采集600s | | | 1 | 0.816667 | 0.163989 | 采集600s | | 通道T02 | 2 | 0.805000 | 0.161647 | 采集600s | | | 3 | 0.866667 | 0.174029 | 采集600s | | | 1 | 0.390000 | 0.078132 | 采集600s | | 通道T03 | 2 | 0.388333 | 0.0779786 | 采集600s | | | 3 | 0.356667 | 0.0716198 | 采集600s | | | 1 | 1.49667 | 0.300535 | 采集600s | | 通道T04 | 2 | 1.50833 | 0.302878 | 采集600s | | _ | 3 | 1.51500 | 0.304217 | 采集600s | The dark field images measured 3 times by Camera #1 have maximum counts of 2, 2, and 2 for each measurement. The dark field images measured 3 times by Camera #2 have maximum counts of 2, 2, and 1 for each measurement. The dark field images measured 3 times by Camera #3 have maximum counts of 1, 1, and 1 for each measurement. The dark field images measured 3 times by Camera #4 have maximum counts of 2, 1, and 2 for each measurement. # **\Xi**, Calibration Approach In-orbit #### **On-board Radiometric Calibration** The brightness of the on-board calibration device is calibrated under ground vacuum conditions. When the imager is in orbit, it regularly images the on-board calibration device to calibrate the response change of the instrument. #### Imaging of diffuse reflection plate with 4 cameras under ground vacuum # **\equiv**, Calibration Approach In-orbit The brightness distribution of on-bard calibration of the imaging of the diffuse reflection plate by 4 cameras after geometric distortion correction and flat-field calibration. #### **On-board calibration accuracy analysis** | Error Source | Error | |--|-------| | Ground Calibration Error of On - board Calibration Device | 11.8% | | Signal - to - Noise Ratio Error of On - orbit Image of Diffuse
Reflection Plate | 4.5% | | Light Source Attenuation Error | 2% | | Diffuse Reflection Plate Attenuation Error | 5% | Comprehensive error of on-board radiometric calibration: $$e = \sqrt{0.118^2 + 0.045^2 + 0.02^2 + 0.05^2} = 13.7\%$$ # 四、Conclude | Num. | Parameter | Requirement | Test Value | |------|-------------------------------|--|---| | 1 | Operating
Wavelength Range | Channel 1: 140 ~160nm; Channel 2: 160 ~180nm | LBHS: 140-160nm; LBHL: 160-180nm | | 2 | Dynamic Range | 200-8000 Rayleigh | Camera #1: 14.3599-30544.965 Rayleigh
Camera #2: 15.7531-33397.141 Rayleigh
Camera #3: 20.8036-44250.953Rayleigh
Camera #4: 20.0665-42682.941 Rayleigh | | 3 | Overall Sensitivity | Better than 6.0 counts/Rayleigh/s | Camera #1: 9.8870952counts/(s·Rayleigh) Camera #2: 9.0127480 counts/(s·Rayleigh) Camera #3: 6.8247120 counts/(s·Rayleigh) Camera #4: 7.0754260counts/(s·Rayleigh) | | 4 | Total FOV | ≥ 130°×130° | LBHS: 136.175°×136.506°
LBHL: 135.202°×136.131° | | 5 | Temporal
Resolution | ≤2 min (1 frame) | 111.6s | | 6 | Spatial Resolution | Subsatellite point resolution: ≤ 10km (110km height)Non Subsatellite point resolution: extrapolated from the resolution projected onto a height of 110km | 0.61° | | 7 | Pointing Accuracy | ≤0.2° (Minimum Requirement), ≤0.1° (Expected Value) | Average Pointing Deviation 0.0825° | # Thank you for your attention!