

Cross-calibration of ESA radiation monitors

Ingmar Sandberg

SPACE APPLICATIONS & RESEARCH CONSULTANCY

SPARC, GREECE

17-21 March Changchun, China

Acknowledgments

DATASETS/DISCUSSIONS

- H. Evans, P. Jiggens, M. Heil, ESA Technical officers
- B. Kress , J Rodriguez, NOAA, USA (GOES/SGPS)
- T. Nagatsuma, NICT, Japan (Himawari-8/SEDA)
- Y. Miyoshi, N. Higashio, T. Mitani et al, JAXA (Arase, XEP, HEP)
- T. Onsager, J Rodriguez, A. Boudouridis et al, NOAA, USA (GOES/MPSHI)
- K. Ryden, University of Surrey, UK (Giove-A/SURF, GSAT/EMU)
- D. Baker, S. Claudepierre, A. Boyd, USA, (RBSP/ECT datasets)

Relevant funding

- SSA NGRM Data Processing ESA Contract No 4000127954/19/D/CT
- Cross Calibration EMU Dataset with RBSP, 4000135823/21/NL/GLC/mkn
- European Contribution to International Radiation Environment Near Earth (IRENE) Modelling System, ESA Contract 4000127282/19/NL/IB/gg with SPARC
- SSA NGRM Data Processing ESA Contract No 4000127954/19/D/CT
- Global Radiation Belt Prototype for LEO constellations, 4000137689/22/NL/CRS with ONERA (A. Sicard)

SPARC Team

- I. Sandberg
- C. Papadimitriou
- S. Aminalragia-Giamini

Outline

- ESA radiation Monitors under consideration
- Reference dataset and considerations
- Results accounting proton sensors
- Results accounting electron sensors (GSICS 2023-2024)
- Conclusions

Motivation: calibrate ESA monitors

- In-flight validation/calibration of ESA radiation monitors
- Creation of high-level data products (Level-2)

- GEO EDRS-C: 31 East
- LEO Sentinel-6
- GEO MTG1: 0 East
- GEO MTG-S1
- ERSA Lunar Gateway ... + more to come

- GNSS GSAT-0207
- GNSS GSAT-0215
- OBS: the sensors PT and SURF of GSAT/EMU and Himawari /SEDA are identical!

- HEO INTEGRAL
- LEO PROBA-1
- GNSS Giove-B

.... + more

Radiation Monitors proton sensors/datasets

"Reference" dataset: GOES-18/SGPS Solar and Galactic Proton Sensor

We have performed a series of evaluation studies based on comparisons between actual count-rates during Solar Proton Flux Enhancements and count-rates derived using reference fluxes and monitors RFs $\int_{-\infty}^{\infty}$

$$C_i = \sum_{q=p,e} \int_0 f_q(E) RF_{i,q}(E) dE$$

J. V. Rodriguez, T. G. Onsager, J. E. Mazur, The east-west effect in solar proton flux measurements in geostationary orbit: A new GOES capability, Geophysical Research Letters

https://doi.org/10.1029/2010GL042531

Inter-Calibration System

INTEGRAL/IREM vs GOES-18/SGPS-WEST CRs

GEO EDRS-C/NGRM vs GOES-18/SGPS

GEO MTGI-1/NGRM vs GOES-18/SGPS

GOES-18/SGPS-W/NGRM

Sentinel-6/NGRM

- non sun synchronous orbit
- Altitude: 1,336 km
- Inclination: 66.0°
- NGRM cadence: 15 sec
- Latency: 6 hours

Sentinel 6/NGRM vs GOES-18/SGPS

GOES-18/SGPS-E/NGRM

Cross-calibrated ERSC-NGRM proton fluxes

✓ Apply the cross-calibration factors to the Bow-Tie derived proton fluxes and compare with SGPS fluxes

Cross-calibrated ERSC-NGRM proton fluxes

✓ Apply the cross-calibration factors to the Bow-Tie derived proton fluxes and compare with SGPS fluxes

nter-Calibration System

NGRM/SDSS: conclusions

- NGRM protons sensors on-board Sentinel-6 and EDRS-C can be cross-calibrated with west-looking GOES SGPS telescopes
- NGRM proton sensor on-board MTGI-1 can be cross-calibrated with EAST looking GOES SGPS telescopes
- MTGI-1 and EDRS-C NGRM units act as an EAST and WEST looking telescopes for East 0-31 degrees at GEO
- Cross-calibrated NGRM/BT fluxes agree with SGPS

GSAT/EMU/PT

• 8 Proton telescopes

PT	E_{BT} [MeV]
1	22.8
2	29.8
3	36.8
4	42.7
5	49.7
6	59.4
7	67.0
8	71.1

- Limited validations of GSAT207/PT were performed in the past
- L1 products were derived just at the end of the last SC: 1-2 SPEs available at that time

GSAT215/EMU/PT vs GOES-18/SGPS-EAST CRs

Inter-Calibration System

GSAT215/EMU/PT vs GOES-18/SGPS-WEST CRs

sparc

 10^{1}

GOES-18/SGPS-W/PT

10⁰

10²

10

10²

G215/PT

10-

10-

X-GSAT215/PT vs GOES-18/SGPS-WEST CRs

sparc

X-GSAT207/PT vs GOES-18/SGPS-WEST CRs

Inter-Calibration System

Cross-calibrated EMU/PT proton fluxes

- Use cross-calibrated count-rates
- Consider the Ellison-Ramaty function:

 $J(E) = J_o E^{-\gamma} e^{(-E/Er)}$

- Seek for $J_o,\,\gamma,\,E_r\,$ values that reconstruct optimally the (cross-calibrated) count-rates
- Treat background values
- Evaluate data reconstruction
- Compare with "reference" fluxes

Reconstruction of GSAT215/PT raw CRs

Reconstruction of GSAT215/PT X-CRs

GSAT215/EMU/PT cross-calibrated fluxes

GSAT215/EMU/PT cross-calibrated fluxes

Conclusions

- A reference proton dataset for the current solar cycle should be identified!
- EAST-WEST effect should be considered during SPE calibrations
- The actual response of the proton sensors of NGRM and EMU units present differences with respect to "reference" datasets
 - Cross-calibrations introduce considerable adjustments for EMU proton telescopes.
- Bow-Tie analysis/multiplication factor works "sufficiently well" for NGRM, but not so well for EMU/PT proton fluxes: new approaches are needed
- Lessons from/to Himawari-8-9/SEDA proton telescopes can be useful!
- Inter-consistency among different GOES NOAA (e.g. EPS to SGPS) datasets can be verified indirectly using INTEGRAL/IREM 23+ years data and response functions.
- GSICS 2024-2025: The electron sensors of NGRM and EMU units are well-characterized
 - Cross-calibrations with selected "reference datasets" introduce small adjustments

sparc

See presentations GSICS 2023, 2024

Electron sensors/datasets

Inter-Calibration System

- TC1

- S12

- S13

- S14

- S15

- TC2

- S25

- C1[

- C2[

- C3[

- C4[c

- TC3

- 532

--- S33[

- 534

101

See presentations GSICS 2023, 2024

Inter-calibration of electron datasets: a roadmap

See presentations GSICS 2023, 2024

Inter-Calibration System

E [MeV]

sparc

See presentations GSICS 2023, 2024

GOES 16-17/MPS-Hi vs Arase/HEP-XEP

Inter-Calibration System

type_orbit	HEO
cad	1
cad_times	5
delta_l_max	0.2
delta_alpha_eq_max	2
delta_mlt_max	24
L_lims	[1, 10]
alpha_eq_lims	[72, 90]
mlt_lims1	[0, 24]
mlt_lims2	[0, 24]
kp_days	2
kp_lim	100

See presentations GSICS 2023, 2024

EDRS-C/NGRM Level 2 using Arase

I Sandberg et al <u>https://doi.org/10.1109/TNS.2022.3160108</u>

See presentations GSICS 2023, 2024

EDRS-C/NGRM L2 vs 17/MPSH

GSAT207/EMU L1 vs ARASE

Inter-Calibration "System"

- UNILIB library: IGRF model & Olson-Pfitzer 1977
- Conjunction conditions
 - HEO:
 - $\delta(t), \, \delta(MLT), \, \delta(L^*), \, \delta(\alpha_{eq}), \, \alpha_{eq} \, {}_{\sim} \, 90$
 - MLT = [3, 9] or [15, 21], Kp<2 for 2 days, $\alpha_{eq} \sim 90$

Inter-Calibration System

- GEO-GEO
 - $\delta(t) \text{ or } \delta(MLT), \, \delta(L^*), \, \delta(\alpha_{eq}), \, \alpha_{eq} \, {}_{\sim} \, 90$
 - long term averages
- Identify conjunctions: quick search algorithm
 - Derive measurements with:
 - same integration period
 - Identical time-stamps

Inter-Calibration "System"

- Evaluate determined conjunctions/Update conditions
- On-the-fly calculation of the "reference data product"
 - Interpolation/integration to target flux energies
 - Construction of sensor measurements (count-rates/charging currents) provided RF availability

• Define scaling factors

- R = median(J_B /J_A): J_A and J_B denote the series of joint observations by the satellites of the reference A and the target B
- SF_{fit}= sf | min(MSE) (lin/log)
- Rescale: $J'_B = J_B / R$, or by $J'_B = J_B / SF_{fit}$
- $Dlnj=[(1/n)(\Sigma (ln(J'_B/J_A))^2)]^{0.5}$ (random error of series)

