

# Current status of AMI IR product

2025.03.21. Euidong Hwang, KMA/NMSC

S National Meteorological Satellite Center

# National Meteorological Satellite Center



# Contents

- Uncertainty evaluation for AMI – IASI product
- Review of AMI IR products



## **Uncertainty evaluation for AMI-IASI product**



4

### Introduction

- Uncertainty Evaluation methods for AMI-IASI based on Hewison (2013)
- Analyzing the components of uncertainty: Systematic error and Random error
  - Systematic errors (4) : Temporal, Latitudinal, Longitudinal and Geometric mismatches
    - ✓ Spectral mismatch is excluded from this analysis (IASI covers all spectra of AMI)
  - Random errors (6) : Temporal, Latitudinal, Longitudinal and Geometric variabilities and Radiometric noise(2)

Reference

Tim J. Hewison, 2013, "An Evaluation of the Uncertainty of the GSICS SEVIRI-IASI Intercalibration Products", IEEE TGRS, VOL. 51, NO. 3, 1171-1181

### Systematic errors [S]

To calculate the uncertainty caused by systematic components in the matching, the typical differences ( $\Delta x$ ) and their sensitivities( $\frac{\partial L}{\partial x}$ ) are used

$$u_j^s(L_i) = \Delta x_j^s(\frac{\partial L}{\partial x^s})_j$$

#### Random errors [R]

To calculate the uncertainty caused by random components in the matching, the random differences ( $z\Delta x$ ) associated with the matching criteria and their sensitivities( $\frac{\partial L}{\partial x}$ ) are used

 $u_j^r(L_i) = z_i \Delta x_{i,j}^r (\frac{\partial \mathbf{L}}{\partial \mathbf{x}^r})_j$ 

### Methods

- Temporal mismatch/variability [S, R]
  - Δx : Typical differences in temporal distribution
  - $\left(\frac{\partial L}{\partial x^s}\right)$
- : Change in radiance when only the time changes for the same pixel
- Spatial mismatch/variability [S, R]
  - Δx : Typical differences in spatial distribution caused by the geolocation accuracy of AMI and IASI



: Change in radiance when only the pixel changes

where, t<sub>max</sub> : Time criteria x<sub>max</sub> : Median distance between adjacent pixel

$$= \frac{2\Delta t_{max}}{\sqrt{3n}} \text{ OR } t_{max} \text{ [S OR R]}$$

$$= \frac{1}{n_i n_j n_k} \sum_{i,j,k} [L(x_i, y_j, t_k + \Delta t) - L(x_i, y_j, t_k)]$$

$$= OR$$

$$\sqrt{\frac{1}{n} \sum (L(x_i, y_j, t_k + \Delta t) - L(x_i, y_j, t_k))^2}$$

6

[S]

$$= \left(\frac{GEO \ nav. + LEO \ acc.}{\sqrt{2}}\right) * \frac{1}{\sqrt{3}} \ OR \ x_{max} [S \ OR \ R]$$

$$\frac{1}{n_i n_j n_k} \sum_{i,j,k} \left[ L(x_i + \Delta x, y_j, t_k) - L(x_i, y_j, t_k) \right]$$

$$= OR$$

$$[S]$$

$$\sqrt{\frac{1}{n}\sum \left(L(x_i + \Delta x, y_j, t_k) - L(x_i, y_j, t_k)\right)^2} \qquad [\mathbf{R}]$$

### Methods

### Geometric mismatch/variability [S, R]

 $\Delta x \qquad : \text{Mean differences in geometric distribution of} \\ \qquad \text{collocated data}$ 

 $\left(\frac{\partial L}{\partial x^{s}}\right)$ 

- : Change in radiance when only Sat<sub>zen</sub> varies under the same observation conditions
- Radiometric noise [R]

Δx :1



: Noise associated with actual channels/pixels used in spectral matching ( = effective noise)

$$= \operatorname{mean}\left(\left|\frac{\cos(leo_{zen})}{\cos(geo_{zen})} - 1\right|\right) \operatorname{OR} 1 [S \operatorname{OR} R]$$

 $= \frac{1}{n} \sum [L_{RTM} - L_{zen\pm 1^{\circ}}]$   $L_{RTM} : \text{simulate AMI's observation data*}$ 

\* KMA is generating RTM simulated data based on the actual measurements from AMI



### Summary of Uncertainty Evaluation for Systematic Error

- Uncertainties caused by temporal, longitudinal, latitudinal, and geometric mismatches are evaluated
  - Spectral mismatch was excluded because the spectra of IASI cover all channels of AMI
- Among the systematic errors, spatial mismatches are dominant. In particular, errors caused by latitudinal mismatch are the most significant
  - Latitudinal mismatch appears larger than longitudinal mismatch because the GEOS projection is more sensitive to curvature effects in the latitude direction.
- Total systematic error is largest in the 3.8µm channel at 0.1 K, while the other channels are below 0.01K

### **Contribution of Systematic Error**

#### National Meteorological Satellite Center



### Summary of Uncertainty Evaluation for Random Error

- Uncertainties caused by temporal, longitudinal, latitudinal, and geometric variabilities and Radiometric noise are evaluated
- Among the random errors, spatiotemporal variabilities are dominant in most channels
- Total random error is largest in the 3.8µm channel at approximately 4K, while the other channels are below 1K
- V-shape pattern
  - In the contribution plot of random error, a V-shape pattern is observed, with high errors in the low and high temperature regions and the smallest errors near the standard scene TB
    - > This occurs because random error decreases with more data
    - The majority of the collocated data is concentrated near the standard scene TB, resulting in smaller errors

### **Contribution of Random Error**

#### S National Meteorological Satellite Center



#### Total Combined Uncertainty Total Systematic Uncertainty Total Random Uncertainty



**Contribution of Total Error** 

 Except for the 3.8µm channel, total errors were below 0.3 K, and all channels showed below 0.05K @ standard scene TB

### Summary of Perturbations and Sensitivities (AMI)

|                            |             | Sensitivity [mW/m2/sr/cm-1/dx] |          |          |          |          |          |          |          |          |         |  |  |
|----------------------------|-------------|--------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|---------|--|--|
| Systematic Error Type      | Δx          | SW038                          | WV063    | WV069    | WV073    | IR087    | IR096    | IR105    | IR112    | IR123    | IR133   |  |  |
| Longitudinal mismatch(AMI) | 0.920km     | 0.00001                        | -0.00004 | -0.00008 | -0.00007 | 0.00057  | -0.00005 | 0.00094  | 0.00103  | 0.00096  | 0.00032 |  |  |
| Latitudinal mismatch(AMI)  | 0.952km     | 0.00001                        | 0.00008  | 0.00031  | 0.00055  | 0.00107  | 0.00043  | 0.00165  | 0.00201  | 0.00228  | 0.00155 |  |  |
| Temporal mismatch(AMI)     | 0.0007111hr | -0.00349                       | 0.00197  | 0.01012  | 0.01725  | -0.08496 | -0.06605 | -0.10756 | -0.08010 | -0.03412 | 0.04266 |  |  |
| Geometric mismatch(AMI)    | 0.000481    | 0.00191                        | 0.01617  | 0.03820  | 0.06176  | 0.12513  | 0.25335  | 0.14352  | 0.15493  | 0.17347  | 0.24455 |  |  |
| Spectral Calibration       | 2 ppm       | _                              | _        | _        | _        | _        | _        | _        | _        | _        | _       |  |  |

|                               |          | Sensitivity [mW/m2/sr/cm-1/dx] |         |         |         |         |         |         |         |         |         |    |  |
|-------------------------------|----------|--------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----|--|
| Random Error Type             | Δ×       | SW038                          | WV063   | WV069   | WV073   | IR087   | IR096   | IR105   | IR112   | IR123   | IR133   |    |  |
| Longitudinal variability(AMI) | 2.105 km | 0.01644                        | 0.02158 | 0.06275 | 0.12441 | 0.84334 | 0.60393 | 1.26767 | 1.35550 | 1.30280 | 0.87614 |    |  |
| Latitudinal variability(AMI)  | 2.173 km | 0.01790                        | 0.02319 | 0.06709 | 0.13360 | 0.89955 | 0.64798 | 1.34632 | 1.44343 | 1.38865 | 0.93158 |    |  |
| Temporal variability(AMI)     | 5 min    | 0.00424                        | 0.00691 | 0.01929 | 0.03630 | 0.22366 | 0.15685 | 0.32941 | 0.36093 | 0.35451 | 0.24298 |    |  |
| Geometric variability(AMI)    | 1        | 0.00191                        | 0.01617 | 0.03820 | 0.06176 | 0.12513 | 0.25335 | 0.14352 | 0.15493 | 0.17347 | 0.24455 |    |  |
| Radiometric noise(AMI)        | 1        | 0.00042                        | 0.00088 | 0.00176 | 0.00314 | 0.00359 | 0.00443 | 0.00497 | 0.00497 | 0.00559 | 0.01113 |    |  |
| Radiometric noise(IASI)       | 1        | 0.00066                        | 0.00311 | 0.00330 | 0.00373 | 0.01723 | 0.02134 | 0.01930 | 0.01987 | 0.01887 | 0.02779 | 13 |  |

#### S National Meteorological Satellite Center

### Summary of Perturbations and Sensitivities (vs AHI)

|            |                   |          | Sensitivity [mW/m2/sr/cm-1/dx] |          |          |          |          |          |          |          |          |          |  |  |
|------------|-------------------|----------|--------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|
| Longit     | udinal components | ∆x       | sw038                          | wv063    | wv069    | wv073    | ir087    | ir096    | ir105    | ir112    | ir123    | ir133    |  |  |
| Systematic | GK2A/AMI          | 0.920 km | 0.00001                        | -0.00004 | -0.00008 | -0.00007 | 0.00057  | -0.00005 | 0.00094  | 0.00103  | 0.00096  | 0.00032  |  |  |
| Error      | Himawari-8/AHI    | 1.119 km | 0.00001                        | -0.00013 | -0.00035 | -0.00048 | -0.00026 | 0.00016  | -0.00056 | -0.00086 | -0.00127 | -0.00096 |  |  |
| Random     | GK2A/AMI          | 2.105 km | 0.01644                        | 0.02158  | 0.06275  | 0.12441  | 0.84334  | 0.60393  | 1.26767  | 1.35550  | 1.30280  | 0.87614  |  |  |
| Error      | Himawari-8/AHI    | 2.130km  | 0.01500                        | 0.02900  | 0.08700  | 0.17400  | 0.84700  | 0.63900  | 1.23800  | 1.32300  | 1.28600  | 0.99000  |  |  |

|            |                  |          | Sensitivity [mW/m2/sr/cm-1/dx] |          |          |          |          |         |          |          |          |          |  |  |
|------------|------------------|----------|--------------------------------|----------|----------|----------|----------|---------|----------|----------|----------|----------|--|--|
| Latitu     | dinal components | Δx       | sw038                          | wv063    | wv069    | wv073    | ir087    | ir096   | ir105    | ir112    | ir123    | ir133    |  |  |
| Systematic | GK2A/AMI         | 0.952 km | 0.00001                        | 0.00008  | 0.00031  | 0.00055  | 0.00107  | 0.00043 | 0.00165  | 0.00201  | 0.00228  | 0.00155  |  |  |
| Error      | Himawari-8/AHI   | 1.106 km | 0.00001                        | -0.00003 | -0.00009 | -0.00018 | -0.00075 | 0.00049 | -0.00111 | -0.00121 | -0.00121 | -0.00091 |  |  |
| Random     | GK2A/AMI         | 2.173 km | 0.01790                        | 0.02319  | 0.06709  | 0.13360  | 0.89955  | 0.64798 | 1.34632  | 1.44343  | 1.38865  | 0.93158  |  |  |
| Error      | Himawari-8/AHI   | 2.181km  | 0.01600                        | 0.02900  | 0.08600  | 0.17000  | 0.86100  | 0.64900 | 1.24900  | 1.32600  | 1.28400  | 0.97500  |  |  |

\* Arata Okuyama, "JMA GSICS IR Product Status", GRWG/GDWG Annual Meeting, 19 Mar. 2020, Online meeting 14

### Summary of Perturbations and Sensitivities (vs AHI)

|            |                  |            | Sensitivity [mW/m2/sr/cm-1/dx] |          |          |          |          |          |          |          |          |          |  |
|------------|------------------|------------|--------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| Temp       | poral components | Δx         | sw038                          | wv063    | wv069    | wv073    | ir087    | ir096    | ir105    | ir112    | ir123    | ir133    |  |
| Systematic | GK2A/AMI         | 0.000711hr | -0.00349                       | 0.00197  | 0.01012  | 0.01725  | -0.08496 | -0.06605 | -0.10756 | -0.08010 | -0.03412 | 0.04266  |  |
| Error      | Himawari-8/AHI   | 0.000706hr | -0.00313                       | -0.00290 | -0.00327 | -0.00051 | -0.06475 | -0.05735 | -0.07949 | -0.07893 | -0.05872 | -0.00409 |  |
| Random     | GK2A/AMI         | 5 min      | 0.00424                        | 0.00691  | 0.01929  | 0.03630  | 0.22366  | 0.15685  | 0.32941  | 0.36093  | 0.35451  | 0.24298  |  |
| Error      | Himawari-8/AHI   | 5 min      | 0.00410                        | 0.00920  | 0.02700  | 0.05270  | 0.24460  | 0.18550  | 0.35930  | 0.38800  | 0.38240  | 0.29870  |  |

|            |                   |          | Sensitivity [mW/m2/sr/cm-1/dx] |         |         |         |         |         |         |         |         |         |  |  |
|------------|-------------------|----------|--------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|--|
| Geom       | netric components | ∆x       | sw038                          | wv063   | wv069   | wv073   | ir087   | ir096   | ir105   | ir112   | ir123   | ir133   |  |  |
| Systematic | GK2A/AMI          | 0.000481 | 0.00191                        | 0.01617 | 0.03820 | 0.06176 | 0.12513 | 0.25335 | 0.14352 | 0.15493 | 0.17347 | 0.24455 |  |  |
| Error      | Himawari-8/AHI    | 0.000506 | 0.02540                        | 0.02551 | 0.02551 | 0.02551 | 0.02543 | 0.02543 | 0.02544 | 0.02544 | 0.02544 | 0.02545 |  |  |
| Random     | GK2A/AMI          | 1        | 0.00191                        | 0.01617 | 0.03820 | 0.06176 | 0.12513 | 0.25335 | 0.14352 | 0.15493 | 0.17347 | 0.24455 |  |  |
| Error      | Himawari-8/AHI    | 1        | 0.02500                        | 0.02600 | 0.02600 | 0.02600 | 0.02500 | 0.02500 | 0.02500 | 0.02500 | 0.02500 | 0.02500 |  |  |



# **Review of AMI IR products**



### Background

- ✓ GK2A/AMI has been performing meteorological observations since July 2019 and has been operational for approximately 5 years
- At this midpoint of AMI's mission duration, we are conducting a detailed analysis of the calibration status of AMI
- ✓ Additionally, we are reviewing the GSICS inter-calibration process:
  - Regression (ODR vs WLR, IR algorithm ver. 2)
  - Plotting script (for research)
  - GSICS products (NRTC, RAC)

### **Review of plotting script (for Research)**



- This plot monitors the calibration status of AMI (time series of standard scene bias)
  - The calibration coefficients used to calculate bias are derived from TB regression
  - It shows peaks in specific months and may appear to indicate seasonal variation

## **Review of plotting script (for Research)**

- Radiance and Brightness Temperature(TB) are non-linear
  - In the low-temperature range, the distribution is sparse, while in the high-temperature range, it is dense (i.e., the distribution per DN differs)
  - For this reason, when data from the low-temperature range is converted to TB, it results in larger uncertainty compared to the high-temperature range



## **Review of plotting script (for Research)**

- The research plotting script was performing regression on TB (Not operational)
  - TB regress also indicates the trend of bias, but it includes uncertainty (particularly in 3.8μm)



We plan to utilize the improved process to analyze the long-term calibration status of AMI

### **Review of GSICS products**

21

Fixing the bug in the product generation process for 3.8µm channel's RAC products 



- Uncertainty evaluation for AMI-IASI products is performed
  - In systematic error, spatial mismatch is dominant. In particular, the larger latitudinal error seems to be due to the GEOS projection
  - In random error, spatiotemporal components are dominant in most channels, and more data means less random error
  - Total error is below 0.05K in all channels (@ std. scene TB)
  - The analysis results, excluding the geometric components, are similar to Himawari-8.
- Modifying the GSICS process to analysis the long-term performance of the GK2A/AMI infrared channel
  - Enhanced the plotting script for research
  - Fixed bug in the 3.8µm RAC products, and they are currently being reproduced and distributed



S National Meteorological Satellite Center

### [Appendix] Spatial/Temporal Variogram



 Confirmed the homogeneity of the spatial distribution through the linearity  Confirmed the homogeneity of the temporal distribution through the linearity

## [Appendix] Long-term IR calibration of AMI

#### National Meteorological Satellite Center



