

Hyperspectral CoSMIR-H Aircraft Instrument and the WH²yMSIE Campaign

Rachael Kroodsma¹ Ian Adams¹, Troy Ames¹, Matthew Fritts¹, Antonia Gambacorta¹, Alexander Kotsakis^{1,2}, Priscilla Mohammed^{1,3}, Stephen Nicholls^{1,4}, Jeffrey Piepmeier¹ 'NASA Goddard Space Flight Center, ²University of Maryland, ³Morgan State University, ⁴SSAI GSICS Annual Meeting 19 March 2025

GODDARD EARTH SCIENCES

Introduction

National Aeronautics and Space Administration

TOWARD A GLOBAL PLANETARY BOUNDARY LAYER OBSERVING SYSTEM

THE NASA PBL INCUBATION STUDY TEAM REPORT

João Teixeira ⁽¹⁾, Jeffrey R. Piepmeier ⁽²⁾, Amin R. Nehrir ⁽³⁾, Chi O. Ao ⁽¹⁾, Shuyi S. Chen ⁽⁴⁾, Carol A. Clayson ⁽⁵⁾, Ann M. Fridlind ⁽⁵⁾, Matthew Lebsock ⁽¹⁾, Will McCarty ⁽²⁾, Haydee Salmun ⁽⁷⁾, Joseph A. Santanello ⁽²⁾, David D. Turner ⁽⁸⁾, Zhien Wang ⁽⁹⁾, Xubin Zeng ⁽¹⁰⁾

https://science.nasa.gov/earth-science/decadal-pbl

Motivation:

Planetary Boundary Layer (PBL) Study Team Report lists hyperspectral microwave (HMW) sensors as one of the **"Essential Components"** of a future global PBL observing system, to provide **"accurate PBL and free tropospheric** *three-dimensional (3D) temperature and water vapor structure context"*

Objective:

- Build an airborne HMW sensor and collect observations to demonstrate capability of HMW sounding, especially in the PBL.
- Enhance the airborne CoSMIR instrument with hyperspectral receivers (renamed CoSMIR-H) by utilizing ASIC spectrometers to give full spectrum coverage at 50-58 GHz and 175-191 GHz and conduct flights to collect data.

What is Hyperspectral Microwave?

Sampling of Papers: 2010-2015

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 1, JANUARY 20

Hyperspectral Microwave Atmospheric Sounding

William J. Blackwell, Senior Member, IEEE, Laura J. Bickmeier, R. Vincent Leslie, Michael L. Pieper, Jenna E. Samra, Chinnawat Surussavadee, Member, IEEE, and Carolyn A. Upham

Benefits of a Hyperspectral Microwave Sensor

Applications in Environmental Monitoring and Weather Forecasting

Sid-Ahmed Boukabara Kevin Garrett NOAA/NESDIS/STAR Camp Springs, MD, USA Sid.Boukabara@noaa.gov

I.M. Systems Group Camp Springs, MD, USA Kevin.Garrett@noaa.gov

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE 10.1002/2015JD023331

A hyperspectral MW instrument could

improve temperature & humidity

retrieval compared to MetOp-SG The main impact from HYMS comes

Kev Points:

Microwave hyperspectral measurements for temperature and humidity atmospheric profiling from satellite: The clear-sky case

Filipe Aires^{1,2,3}, Catherine Prigent^{1,2}, Emiliano Orlandi⁴, Mathias Milz⁵, Patrick Eriksson⁶, Susanne Crewell⁴, Chung-Chi Lin⁷, and Ville Kangas⁷

Information content on temperature and water vapour from a hyper-spectral microwave sensor

J.-F. Mahfouf,^a* C. Birman,^a F. Aires,^{b,c} C. Prigent,^c E. Orlandi^d and M. Milz^e

NOAA BAA 2022

BROAD AGENCY ANNOUNCEMENT: Demonstrating the Hyperspectral Microwave Sensor (HyMS) and Assessing the Benefits for **NOAA/NESDIS**

WE2.R18: Hyperspectral Microwave Sounder Science and Technology Wed, 19 Jul, 10:15 - 11:30 Pacific Time (UTC -7) Location: Room 18 Session Type: Oral Session Co-Chairs: Jeffrey Piepmeier, NASA and William Blackwell, MIT Lincoln IGARSS 2023 Special Session Laboratory Track: Community-Contributed Sessions

How many channels are needed to be considered "hyperspectral"?

- Infrared Atmospheric Sounding ۲ Interferometer (IASI) = 8461 channels
- Microwave = >100 channels

CoSMIR Overview

Conical Scanning Millimeter-wave Imaging Radiometer

- Programmable scanning airborne radiometer with frequencies from 50 to 183 GHz
- Originally built in the early 2000s for SSMIS cal/val (2004-2005)
- Modified in late 2000s to have frequencies similar to GMI for GPM GV
 - Flew in four GPM GV campaigns (2011-2015)
- Recently flew in IMPACTS (2020/2022)
- Significant upgrade to the receivers in 2023 to become CoSMIR-Hyperspectral

CoSMIR (1)	CoSMIR (2)	GMI
50.3h	50.3h	
52.8h	52.8h	
53.6h		
91.665v/h	89.0v/h	89.0v/h
150h	165.5v/h	166v/h
183.31±1h	183.31±1h	
183.31±3h	183.31±3h	183.31±3v
183.31±6.6h	183.31±7h	183.31±7v

CoSMIR has the unique ability to scan in various modes: fore/aft conical and cross/along-track (right).

CoSMIR TB from 4 Feb 2022 IMPACTS flight Rain/snow system over the Northeast USA

CoSMIR -> CoSMIR-Hyperspectral

NAS

Modified the CoSMIR 50-GHz and 183-GHz receivers to achieve full spectrum (4 MHz resolution) observations at 50-58 GHz (O_2) and 175-191 GHz (H_2O) using six PMCC ASIC spectrometers

- New receivers
 - 50-GHz and 183-GHz major updates with ASIC spectrometers
 - Used opportunity to update 89- and 165-GHz receivers
- Mechanical structure remained the same
 - Calibration targets and elevation/azimuth axes
 - Reduces cost associated with building a new instrument

Data System

200

- Major updates to handle large volume of data
- CoSMIR-H is ~3 MB/s vs 1.8 kB/s for CoSMIR
- Software
 - New ground processing software required
 - Combine 4-MHz resolution into channels for science

Channel Set

Channel	Center Frequency (GHz)	Bandwidth (MHz)	Spectral Band (GHz)	Approx. NEDT (K) (70 ms int time)
50-58h	50.002, 50.006, 57.994, 57.998	3.906	50-50.004, 50.004-50.008, 57.992-57.996, 57.996-58	1.5
175.3-191.3v	175.302, 175.306, 191.294, 191.298	3.906	175.3-175.304,175.304-175.308, 191.292-191.296, 191.296-191.3	3.5
89v	89.0±1.25	1500 (x2)	87.0-88.5 and 89.5-91.0	0.1
89h	89.0±1.25	1500 (x2)	87.0-88.5 and 89.5-91.0	0.1
165v	165.3±1.25	1500 (x2)	163.3-164.8 and 165.8-167.3	0.5
165h	165.3±1.25	1500 (x2)	163.3-164.8 and 165.8-167.3	0.6

6148 total channels

Channel set order in the L1 data product

- 1-2048: 50-58 GHz
- 2049-6144: 175.3-191.3 GHz
- 6145-6148: 89v, 89h, 165v, 165h

GODDARD Scan Geometry and Spatial Resolution

- Cross-track scan: Scanning left to right (relative to forward direction of aircraft), -48.2° to 48.2° elevation angle (NOT mixed polarization)
- Half-power beamwidth: ~4.5° at 50-58 GHz, ~4.0° at 89/165/183 GHz
- Nadir footprint: 1.6x1.6 km (50-58 GHz) and 1.4x1.4 km (89-183 GHz) for ER-2 (20 km altitude)
- Off-nadir footprint at 48.2°: 2.4x3.6 km (50-58 GHz) and 2.1x3.2 km (89-183 GHz) for ER-2 (20 km altitude)

(Top) Ground track pattern for 151 scan positions at 10 ms integration time.

(Bottom) Ground track pattern for 51 scan positions, averaging 7 pixels to give 70 ms integration time. This is the scan geometry included in the L1 files.

New footprint size with 70 ms averaging (4.0° beamwidth) Nadir: 1.4x2.8 km Off-nadir: 2.1x6.4 km

CoSMIR-H Engineering Check Flights

- Successful engineering check flights on the ER-2 in July 2024
 - CoSMIR-H and MBARS flew together
 - MBARS: Microwave Barometric Radar, PI: Matt Walker-McLinden
 - Five total flights, ~19 hours of observations
- Preparations for the WH²yMSIE campaign
 - Issues noticed during the check flights allowed us to further optimize CoSMIR-H prior to flying again in WH²yMSIE

MetOp-B Overpass

Convection Observations

Flight Tracks

(Top) CoSMIR-H and MBARS teams perform instrument check outs prior to first flight.(Bottom) ER-2 lands at Edwards AFB after a flight.(Credit: NASA AFRC)

WH²yMSIE Campaign: Oct/Nov 2024

<u>Westcoast and Heartland Hyperspectral Microwave Sensor Intensive Experiment</u>

- NOAA Joint Ventures Partnership program to collect an extended CoSMIR-H dataset over a variety of atmospheric and surface conditions in Oct-Nov 2024
- WH²yMSIE also included several complementary sensors funded by NASA on the ER-2 and the G-III aircraft to demonstrate the benefits of a remote sensing instrument suite for measuring the PBL

ER-2 payload

Hyperspectral microwave (CoSMIR-H) Hyperspectral infrared (NAST-I and S-HIS) Low frequency microwave radiometer (AMPR) Visible/infrared imager (MASTER) Backscatter lidar (CPL) W-band radar (CRS) or pressure radar (MBARS) GPS Radio Occultation (ARO)

G-III payload

Differential absorption lidar (HALO) Doppler wind lidar (AWP) Dropsondes

https://earth.gsfc.nasa.gov/climate/campaigns/WHyMSIE

WH²yMSIE Flights Overview

- Ten total flights, ~43.5 hours of CoSMIR-H observations (~54 flight hours)
- Mix of over-land and over-ocean
- Consisted of mostly clear sky observations
- G-III joined the ER-2 for second half of the campaign

Fligh t Date	Approx. hours CoSMIR-H data	Ob	Observations/Location		
10/18	2:50	Clea	Clear-sky over ocean and land. Flew over Lake Tahoe and Salton Sea.		
10/22	5:13	Ove sites	Over-land out and back flight to ARM SGP. Flew over several NWS radiosonde sites and NSSL. Clear sky except some high clouds over New Mexico.		
10/23	4:03	Clea AWS	Clear-sky over-ocean with a NOAA21 overpass at 21:05 UTC. Also close to the AWS ground-track for an overpass at 18:52 UTC.		
10/25	6:41	Over-land out and back flight to Scott AFB with overflights of several NWS radiosonde sites and ARM SGP. Clear sky except for very low clouds over Scott.			
10/30	4:09	Ove Clea cloue	Over-ocean coordinated G-III flight with an EarthCARE overpass at 22:20 UTC. Clear-ish sky on the northern part of the flight path, very low puffy clouds (<2 km cloud top) on the southern EarthCARE overpass leg.		
10/31	5:28	Over-land flight to ARM SGP. Flew over several NWS radiosonde sites and NSSL. G-III coordinated for the flight legs in Arizona.			
11/04	3:54	Over-ocean targeting clear-sky AWS overpass at 19:20 UTC with over-land flight legs of Lake Tahoe and Railroad Valley. Fully coordinated with G-III.			
11/07	4:44	Over-ocean targeting NOAA21 overpass at 21:25 UTC. Mostly clear sky except far southern parts of overpass legs. Fully coordinated with G-III.			
11/12	3:35	Over-ocean out and back flight targeting slight pressure gradient and clear/cloudy transitions. No G-III coordination.			
11/13	3:00	Ove coor flight	Over-ocean targeting an atmospheric river and pressure gradient with G-III coordination. ER-2 had to RTB early and did not go over Catalina Island like in the light plan.		
ER-2 only ocean			ER-2 only land	ER2-/G-III coordinated	

CoSMIR-H Observation Highlights

CoSMIR-H selected channels for the 11/13 atmospheric river flight. Precipitation can be seen in the 50/89 GHz channels and ice scattering in the 183 GHz channels on the north side of the leg.

50-GHz and 183-GHz channels are created by averaging the 4-MHz bins into ATMS-equivalent bandwidths

CoSMIR-H Observation Highlights

Clear sky over ARM SGP site (Oklahoma, USA): 22 Oct

(Top) Selected band-averaged (ATMS-equivalent) channel observations. SGP central facility site where the pink lines intersect (aircraft ground track). (Right) TB as a function of frequency at SGP overpass

Calibration: Pointing Correction

- 12 Nov out and back flight over Catalina Island provides excellent opportunity for geolocation checks
- Derive a pitch/roll offset using the coastlines from the out and back legs
 - Similar to doing ascending-descending differences for satellite geolocation

After correction

Before correction

Kroodsma et al., CoSMIR-H and WH2yMSIE

13

Calibration: Striping Correction

- Significant striping (i.e. flicker or 1/f noise) was noticed in the 183-GHz hyperspectral channels
- Correction was developed and applied for the first data release, but we are continuing to investigate other methods to remove the noise
- Conducting laboratory measurements to better characterize and mitigate the noise for future measurements

1/f noise correction significantly reduces the TB striping while maintaining the fine geophysical features.

Calibration: Scan Bias Correction

Some significant scan biases were noticed in the 50-GHz channels on the right side of the scan

Used difference with the left side of the scan to calculate a bias for the right side.

0.5

0

-0.5

-1

0

-5

NEDT Analysis

- Laboratory measurements of the receiver noise temperature (T_R) as a function of frequency were made prior to WH²yMSIE using the onboard hot target and an LN₂ target
- NEDT is estimated from these measurements and is compared with in-flight NEDT calculations for 70 ms integration time (τ) and 4 MHz bandwidth (B)
- The in-flight NEDT shows very good results within what is expected. Work is currently being done to calculate the in-flight NEDT when the 4-MHz bins are averaged into wider bandwidths

Validation: Comparison with ATMS

ATMS Freq (GHz)	ATMS Bandwidth (MHz)	S-NPP ATMS Measured NEDT (K)	CoSMIR-H Expected NEDT* (K)
50.3	180	0.37	TBD
51.76	400	0.28	TBD
52.8	400	0.28	TBD
53.596±0.115	170	0.29	TBD
54.4	400	0.27	TBD
54.94	400	0.27	TBD
55.5	330	0.29	TBD
57.290.344 [f ₀]	155	0.43	TBD
f ₀ ±0.217	78	0.56	TBD
$f_0 \pm 0.322 \pm 0.048$	36	0.59	TBD
$f_0 \pm 0.322 \pm 0.022$	16	0.86	TBD
$f_0 \pm 0.322 \pm 0.010$	8	1.23	TBD
f ₀ ±0.322±0.0045	3	1.95	TBD
183.31±7.0	2000	0.38	TBD
183.31±4.5	2000	0.46	TBD
183.31±3.0	1000	0.54	TBD
183.31±1.8	1000	0.59	TBD
183.31±1.0	500	0.73	TBD

*Currently working on calculations

Upwelling TB comparison: TOA vs 20 km

Stratospheric O₂ sounding channels show significant differences from ATMS but the differences in the H₂O sounding channels should be negligible.

Footprint/swath comparison

ATMS underflights over homogeneous scenes to compare observations

NOAA21 Satellite Underflights

- Two primary underflights
 - Ocean clear-sky
 - ~30-minute aircraft flight track along NOAA21 satellite track
- One 'underflight of opportunity'
 - NOAA21 intersected over-land flight track ~30 min after the ER-2

 CoSMIR-H 4-MHz frequency bins averaged to approximate ATMS channel bands using NOAA21 spectral response functions

Comparisons on the next two slides show very good agreement with ATMS

Ocean Clear-Sky: 23 Oct and 07 Nov

GODDARD

30

Latitude

245

25

CoSMIR-H and WH2yMSIE

35

GODDARD Land Overpass of Opportunity: 22 Oct

51.76 GHz, TB diff: 0.5 K

290

183.31±4.5 GHz, TB diff: -0.3 K

Kroodsma et al., CoSN

Validation: Comparison with RTM

Over-ocean clear-sky CoSMIR-H observed TB spectrum (obs) compared with simulated TB from the Community Radiative Transfer Model CRTM (calc)

Level 1 Data Product

- L1 data files contain full spectrum: 6148 channels
- Example file name: whymsie-cosmirh_ER2_20241022_S172056_E175100_R0_crosstrack.nc
- Files are identified with the flight date and the start (S) and end (E) time in 30-min segments
- Each file ~900 MB

UTC Time	Aircraft Nav Data	Sensor Specific
Year	AC_Altitude	Tb
Month	AC_Pitch	Quality
DayOfMonth	AC_Roll	IncidenceAngle
Hour	AC_Heading	Latitude
Minute	AC_Latitude	Longitude
Second	AC_Longitude	Azimuth
MilliSecond	AC_Speed	Elevation
	AC_SolarZenith	SensorPitch
		SensorRoll

Variable names included in the Level 1 data files

- The airborne hyperspectral microwave sounder CoSMIR-H performed well during flights and collected a quality dataset
- Level 1 calibrated brightness temperature dataset is available for download
- Thanks to NASA ESTO and NOAA's Joint Venture Partnerships program for funding this exciting project

Data download: https://www-air.larc.nasa.gov/cgi-bin/ArcView/whymsie

Contact: rachael.a.kroodsma@nasa.gov